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Abstract—Bluetooth Low Energy (BLE) has emerged as one of
the reference technologies for the development of indoor localiza-
tion systems, due to its increasing ubiquity, low-cost hardware, and
to the introduction of direction-finding enhancements improving
its ranging performance. However, the intrinsic narrowband
nature of BLE makes this technology susceptible to multipath
and channel interference. As a result, it is still challenging to
achieve decimetre-level localization accuracy, which is necessary
when developing location-based services for smart factories and
workspaces. To address this challenge, we present BmmW, an
indoor localization system that augments the ranging estimates
obtained with BLE 5.1’s constant tone extension feature with
mmWave radar measurements to provide real-time 3D localization
of a mobile tag with decimetre-level accuracy. Specifically, BmmW
embeds a deep neural network (DNN) that is jointly trained with
both BLE and mmWave measurements, practically leveraging
the strengths of both technologies. In fact, mmWave radars can
locate objects and people with decimetre-level accuracy, but their
effectiveness in monitoring stationary targets and multiple objects
is limited, and they also suffer from a fast signal attenuation
limiting the usable range to a few metres. We evaluate BmmW’s
performance experimentally, and show that its joint DNN training
scheme allows to track mobile tags in real-time with a mean 3D
localization accuracy of 10 cm when combining angle-of-arrival
BLE measurements with mmWave radar data. We further evaluate
a variant of BmmW, named BmmW-LITE, that is specifically
designed for single-antenna BLE devices (i.e., that avoids the need
of bulky and costly multi-antenna arrays). Our results show that
BmmW-LITE achieves a mean 3D localization accuracy of 36 cm,
thus enabling accurate tracking of objects in indoor environments
despite the use of inexpensive single-antenna BLE devices.

Index Terms—Bluetooth 5.1, Angle of Arrival/Departure,
mmWave, Heatmap, Feature Fusion, Deep Neural Networks.

I. INTRODUCTION

Accurate localization and tracking is one of the fundamental
pillars of 6G networks. In the research realm “Beyond 5G”,
the concept of Integrated Sensing and Communication (ISAC)
has been widely discussed [1], with the aim of providing high-
quality wireless connectivity and seamless location awareness
in both indoor and outdoor environments.

The integration of these capabilities in off-the-shelf IoT
devices can enable the design of location-aware applications
that can be highly beneficial to our society at large. For
example, the ability to accurately track people indoors allows
the creation of targeted services improving the quality of life for
elderly people or vulnerable groups [2]. Similarly, autonomous
robot navigation and asset tracking in smart warehouses and
workspaces are essential services to provide organizations with

*Both authors contributed equally to this research.

a way to efficiently manage, monitor, and track their resources,
towards higher productivity and lower operating costs [3].

Achieving a reliable and accurate tracking of moving targets
in such autonomous settings is of utmost importance, especially
where the safety of people/workers or the optimal utilization of
moving targets are key considerations [3]. However, despite the
wide range of optical and radio frequency (RF) technologies
available, achieving decimetre-level accuracy in indoor settings
with minimal costs is still a key challenge. On the one
hand, existing communication technologies deployed in smart
industries (e.g., Wi-Fi [4], Bluetooth [5], and RFID [6])
are typically narrowband and hence inherently susceptible to
multipath fading, which limits the achievable ranging accuracy.
On the other hand, retrofitting or replacing existing devices
and installations with more accurate technologies may require
significant investments and is labor-intensive – consider, for
example, the installation of optical systems [7], [8] or of an
anchor infrastructure of ultra-wideband (UWB) devices [9].
Combining the benefits of different technologies. In this
work, we study how to increase the localization performance
of BLE devices. We focus on BLE, as it is arguably the most
commonly used IoT technology for indoor localization due
to its wide availability and relatively cheap hardware [10].
Moreover, BLE is already ubiquitous in industrial settings, but
its narrowband nature makes it hard to carry out decimetre-
level localization due to strong multipath effects in indoor
environments, which calls for novel solutions. In contrast to
BLE devices, mmWave radar sensors have a bandwidth of a few
gigahertz, which enables them to sense objects with a resolution
of a few cm. Such inexpensive sensors (≈10$), combined
with Multiple Input Multiple Output (MIMO) techniques, can
be used for the passive localization of objects [11]. They
can hence be used alongside BLE devices to improve their
location estimates without the need of additional infrastructure.
However, mmWave radar sensors are known to suffer from
a fast signal attenuation that limits their usable range, and
are not too effective in the presence of stationary targets
and multiple objects [12]. For this reason, we investigate an
approach that can effectively combine the strength of BLE
and mmWave radar measurements while overcoming their
individual shortcomings. Specifically, we study the adoption of
a DNN to fuse signal features from both BLE and mmWave
sources. We do so, as machine learning has emerged in recent



years as a promising solution to tackle the multipath complexity
and to model the mapping between radio signal features
and target locations [13], [14]. Especially DNNs, with their
powerful function approximation and design flexibility, have
achieved remarkable success in various domains, including
image processing [15], gaming [16], and language models [17].

Contributions. We present BmmW, an indoor localization
system that leverages the strengths of BLE and mmWave
radar technology to provide real-time 3D localization and
tracking of a mobile tag with decimetre-level accuracy. BmmW
builds upon BLE 5.1’s Angle-of-Arrival (AoA) direction-
finding enhancement, which uses a multi-antenna array to
measure the phase difference of the received signal at multiple
antennas and translate it into angular information. Specifically,
BmmW uses this angular information along with mmWave
radar measurements as a feature for training a DNN model. To
improve the effectiveness of the data fusion scheme and DNN
model, we present a novel mmWave radar signal processing and
corresponding signal heatmap generation method that converts
irregular radar point clouds to regular probability distributions
of target locations. We also design and implement a variant
of BmmW, named BmmW-LITE, which uses raw IQ samples
from a single-antenna BLE device along with mmWave radar
measurements. We evaluate both BmmW and BmmW-LITE
in real-world environments, demonstrating that mobile tags can
be tracked in real-time with a mean 3D localization accuracy of
10 cm and 36 cm, respectively. Such accuracy is 80% superior
to that of classical BLE localization methods [5] – albeit at
a price of an increased computational complexity – and is
especially remarkable for BmmW-LITE, as the latter does not
require the use of bulky and costly multi-antenna arrays.

Paper outline. The remainder of this paper is structured
as follows: Sec. II provides an overview of the employed
technologies and of related work. In Sec. III, we describe the
inner details and implementation of BmmW. The experimental
extraction of DNN model features is presented in Sec. IV, and
the corresponding localization evaluation and results obtained
with a mobile target are discussed in Sec. V. Finally, the paper
concludes with a summary of our findings in Sec. VI.

II. BACKGROUND AND RELATED WORK

In this section, we first provide details of BLE and mmWave
technologies, as well as of NN-based data fusion methods. We
then describe the most related works to BmmW, from those
leveraging multiple technologies for indoor localization, to
those performing multi-sensor fusion to increase its accuracy.

A. Bluetooth Low Energy
BLE is widely used in smart industries and workspaces

due to the ubiquity and low cost of its devices. However, the
limited bandwidth, susceptibility to multipath, and the use of
the crowded 2.4GHz band make it challenging to attain a
high localization accuracy. In fact, several works have shown
that received signal strength information (RSSI) alone can
hardly achieve sub-metre accuracy in real-world settings [18]–
[23]. To improve accuracy, direction-finding enhancements

were introduced in the BLE 5.1 specifications, namely support
for Angle of Arrival (AoA) and Angle of Departure (AoD).
Several researchers have conducted empirical studies to evaluate
the accuracy of BLE’s AoA technique [24], [25], but mainly
for static targets and using only a limited number of tested
locations. Recently, Pau et al. [26] have used a hybrid solution
based on both RSSI and AoA information that results in an
average distance error of 0.7m. However, the authors tested
only a few locations and did not describe in detail how these
were chosen nor the impact of dense multipath on RSSI-based
measurements. To improve the accuracy of the AoA technique,
researchers have proposed algorithms based on non-linear
recursive least square and unscented Kalman filters to reduce
multipath and antenna switching errors [27]. Unfortunately,
the choice of channel greatly impacts the direction-finding
techniques [24], [25], and the angular error spreads more at
lower frequencies [5]. An empirical study using software-
defined radios demonstrated the effectiveness of the AoA
technique in achieving sub-metre accuracy when tracking
moving targets [5]; however, measurements were carried out
in an outdoor environment with few multipath reflections, and
information from several packets was averaged to obtain the
reported accuracy. Therefore, despite recent advances, achieving
sub-metre accurate localization for mobile targets using BLE
remains an open challenge. Moreover, the use of the direction
finding enhancements introduced in Bluetooth 5.1 requires
costly and bulky (typical size exceeding 15×15 cm) antenna
arrays that are hard to find on the market [28]. With BmmW, we
train a neural network (NN) with both BLE and mmWave radar
measurements in order to develop a decimetre-level localization
system for mobile targets that is robust to dense multipath
effects. Moreover, with BmmW-LITE, we also eliminate the
need for multi-antenna design considerations.

B. mmWave Radar

mmWave technology commonly refers to the use of RF
signals above 60GHz. The use of sensors operating at these
frequencies has shown great promise for high-precision indoor
tracking applications. These sensors typically have a wide
bandwidth of a few gigahertz and implement the Frequency
Modulated Continuous Wave Radar (FMCW) approach, en-
abling them to sense objects with a high distance resolution
of a few centimetres. When combined with MIMO antennas,
whose size is typically very small (e.g., 2x2 mm [29]), mmWave
radars can operate as 3D imaging sensors, accurately detecting
the 3D coordinates of objects and generating point clouds that
encode their spatial shape [12]. Many researchers have used
commercial mmWave radars as a low-cost and easy-to-deploy
solution, and have shown that they can locate people within a
20 cm error when the target is within the effective detection
range of the radar. For example, authors in [30] and [31] use
radars from Texas Instruments that have integrated transmitters
and receivers on a single chip. Zhao et al. [30] use neural
networks to process mmWave radar data and propose a human
identification and tracking system with a 16 cm median error,
but that can only detect one person at a time. Cui et al. [31]



have shown that a single radar can have a high false alarm rate:
while this can be significantly improved by fusing information
from multiple radars, a minimum distance (15 cm) between
people is necessary to correctly discern multiple individuals.
Wu et al. [32] have used separate mmWave transmitters and
receivers, and designed a novel system that can locate multiple
people simultaneously with a 10 cm error. However, they have
also shown that the accuracy would decrease significantly to
more than 30 cm when the person is more than 1.5m away, as
well as when there are more than two people present. Hence,
while mmWave radars offer several advantages over other
tracking technologies (such as not requiring tags or smart
devices to be carried by subjects), the problem of failing to
distinguish between multiple targets and being prone to clutters
in the environment and occlusion on the line of sight are
intrinsic weaknesses of this technology. Additionally, mmWave
signals attenuate quickly through the air and rely on Doppler
detection, which can reduce their range of view and limit their
effectiveness in monitoring stationary targets [12]. To address
these challenges and enhance localization performance, BmmW
proposes a joint tracking system that combines information
from BLE and mmWave technologies: by leveraging the
strengths of both technologies, BmmW improves the accuracy
and reliability of indoor tracking in challenging environments.
C. NN-based Data Fusion

Data fusion is a process dealing with the correlation and
integration of data and information from multiple sources in
order to produce more consistent, accurate, and useful combined
information than that provided by any individual data source.
Data fusion can be found in many applications, such as health
monitoring, video/audio processing, and communication. For
instance, a sensor data fusion system is presented in [33]
for healthcare applications. A multi-modal fusion module is
proposed in [34] to fuse the audio stream, video stream, and
speaker embedding stream to realise the speaker separation.

Algorithms for data fusion can be very diverse, e.g., weighted
average, K-means, and Bayesian inference, just to name a
few1. Also NNs, by their design flexibility, have gained a
lot of attention for data fusion. Michelsanti et al. [36] have
summarised the main NN-based fusion techniques used in
audio-visual systems (e.g., concatenation, addition, product).
Based on similar NN design principles, these methods can be
extended to the fusion of radio features for localization. This
paper adopts the concatenation-based NN for radio feature
fusion, wherein a two-head input NN is designed for BLE and
mmWave feature processes, and then the processed features
are concatenated together for the following joint training.

D. Exploiting Multiple Communication Technologies and
Multi-Sensor Data Fusion for Indoor Localization

Several research works have proposed the combination of
multiple communication technologies to improve the accuracy
of indoor localization. For instance, Liu et al. [37] fuse Wi-
Fi, inertial sensors, and BLE beacons for indoor localization.
However, this method requires users to carry a smartphone with
extra sensors, which may not be practical in some situations.

1A comprehensive overview of data fusion algorithms is presented in [35].
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Figure 1: Overview of BmmW, an indoor localization system
leveraging BLE 5.1 and mmWave measurements to jointly train
a DNN and predict the 3D coordinates of a mobile tag.

Bala et al. [38] combine UWB and BLE signals to provide
real-time location updates, but require installation of UWB and
BLE devices throughout the indoor environment, which can
be expensive and time-consuming. Jeong et al. [39] propose a
machine learning-based fusion that requires a large amount of
training data to predict the user’s location accurately. Istomin et
al. [40] propose a dual-radio protocol to enable energy-efficient
and accurate social contact detection, leveraging a narrowband
radio (BLE) and an UWB radio. Zhang et al. [41] propose
a system that fuses Wi-Fi and Bluetooth fingerprints in edge
computing. Several other works [42] have also used multi-
sensor fusion to increase the accuracy of indoor localization
(e.g., IMU data, etc.). However, these approaches are highly
dependent on the quality of the radio signal, which can be
affected by factors such as signal interference and the number
of access points in the environment. The main limitations of
these approaches are related to the complexity and cost of the
technology, the need for user participation, and environmental
factors that affect the accuracy of the positioning system.
In contrast to these approaches, BmmW does not require
additional hardware on the target device and leverages angular
information, which is less affected by multipath.

III. BMMW: DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
BmmW, further providing the technical details of its com-
ponents, including BLE, mmWave, and fusion DNN model.

A. Overview of BmmW
The structure of the proposed joint localization framework is

shown in Fig. 1. BmmW’s foundation lies in the reception of
BLE 5.1’s constant tone extension (CTE) and mmWave FMCW
radar measurements. The reception and processing of the BLE
CTE packets are selective. In BmmW, the raw IQ samples
are collected from BLE anchors with multiple antennas, and
are processed by the MUltiple SIgnal Classification (MUSIC)
algorithm for AoA estimation, which serves as the default BLE
feature for the proposed fusion model. Instead, BmmW-LITE
accepts the raw IQ samples from a single antenna as the BLE
feature, in order to save the feature process time and reduce
the cost as well as the computational complexity. The switch in
Fig. 1 represents the above BLE feature selection process. The
techniques used to extract the relevant ‘features’ from BLE
will be detailed in Sec. III-B. For the mmWave measurement,
the critical step is the generation of the heatmap, which aims
to overcome the irregularity of the radar point cloud: details
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about this component will be discussed in Sec. III-C. Please
note that, for accurate location prediction, the BLE features
stream should be synchronized with the mmWave heatmap
stream according to the recorded timestamps. Ultimately, the
synchronized BLE/mmWave features are fed into the fusion
DNN model for 3D location estimation. The architecture of
such DNN model is detailed in Sec. III-D.

B. BLE Direction Finding
AoA and AoD are the direction-finding enhancements intro-

duced in the BLE 5.1 standard [43]. The key concept behind
these techniques involves measuring the phase difference of the
received waveform across multiple antennas and determining
the direction of the signal from the computed phase difference.

Constant tone extension. To perform these techniques, the
Bluetooth SIG added a new field called Constant Tone Exten-
sion (CTE) at the end of a Bluetooth packet. The CTE field lasts
for 16µs to 160µs and consists solely of binary ones that serve
as a 250 kHz frequency offset to the unmodulated carrier. The
purpose of the CTE is to provide a constant wavelength signal
that can be used for IQ sampling and phase detection of the
incoming RF signal. Unlike other parts of the Bluetooth packet,
the CTE field is not subject to whitening processes nor included
in the CRC [43] calculation. It contains a 4µs guard band, 8µs
reference period and 148µs band for IQ sampling. According
to the standard, it is assumed that only one transmitter is active
during the CTE phase difference measurement. Specifically,
in the AoA technique, the receiver is equipped with multiple
antennas that are controlled using an RF switch. By determining
the phase difference observed at these multiple antennas,
the receiver can determine the direction of the transmitter.
Conversely, in the AoD technique, the transmitter is equipped
with multiple antennas and transmits the signal over these
antennas in a time-division manner. The receiver, which has a
single antenna, estimates the direction of the transmitter based
on the time-multiplexed signal. Additionally, given the known
separation between the antennas, the AoA and AoD can be
calculated using Eq. 1:

θA = arccos((ϕλ)/(2πD))

θD = arcsin((ϕλ)/(2πD))
(1)

where λ is the wavelength, ϕ is the phase difference, and D is
the distance between adjacent antennas (11.8mm in BmmW) in
an antenna array. However, to determine the true AoA, MUSIC
is run on the obtained angles, a detailed process outlined in [44].

CTE sampling. The sampling band of 148µs in the CTE
field does not necessarily equate to collecting the maximum
possible number of samples due to the duration of the switching
slots, making it difficult for classical AoA/AoD techniques to
utilize the entire band. While the BLE 5.1 standard defines the

sampling period, manufacturers have the flexibility to develop
their own methods for efficient utilization. One such method,
proposed by Silabs [44] and adopted by BmmW, allows to
collect a maximum of 74 samples with a 1µs switching slot,
as illustrated in Fig. 2. However, this technique discards the
remaining 74 samples during antenna switching slots, and
the samples are reduced to half when the switching slot is
2µs. To optimally utilize the CTE sampling band, we propose
BmmW-LITE: a single-antenna system, illustrated in Fig. 2,
that eliminates the need for multiple antenna switching, hence
allowing a single antenna to collect all IQ samples within the
148µs CTE band. We utilize the collected raw IQ samples as a
‘feature’ to train the NN model. As the CTE is a constant
frequency tone, the model can learn channel impairments.
Additionally, these samples are jointly trained with the info
from the mmWave technology, as described in Sec. III-D.

C. mmWave Radar Heatmap Construction

The principle of mmWave radars and the underlying FMCW
approach have been documented in detail in the literature,
e.g., in [12]. The radar sends mmWave signals to detect
objects in the scene, receives the reflections, and uses a set
of signal processing techniques (including a set of Fourier
transform and peak detection) to produce a point cloud that
encodes the 3D location and shape of the objects. However,
the density and the accuracy of the point cloud are prone
to noise and can have arbitrary population, making them
unsuitable to be processed by a neural network directly.
Additionally, commercial off-the-shelf mmWave radars are
commonly designed for automotive driving applications and
suffer from a lack of elevation resolution. For instance, the TI
AWR series features eight virtual antennas along the azimuth
direction, but only two along the elevation direction [45],
rendering it unsuitable for numerous geometry-based solutions
due to its unbalanced resolution. As a result, since the elevation
information may prove less dependable, we propose relying
solely on 2D information (i.e., azimuth and depth) from the
radar, and converting it into heatmaps. These heatmaps encode
the probability distribution of the person’s position in the scene,
offering a feasible alternative. The heatmap approaches deliver
low computational complexity and facilitate the NN’s ability
to extract features by compressing the feature space.

The complete mmWave data processing chain involves three
parts. The first part follows the standard FMCW approach
as described in [12] and is completed by the radar on-chip
processors. It processes the raw mmWave RF signal and
generates a 3D point cloud representing the scene. Then, a
clutter removal stage is introduced by recording the detected
point cloud from the empty environment and subtracting it from
the actual experimental data. Finally, a heatmap representing
a probability distribution on the person’s location in the area
is generated, where the probabilities are calculated based on
the strength of the mmWave signal (i.e., the population of the
point cloud in each unit region):

Heatmap(P ) =

{
(
∑

p∈P G(p))/|P |, if |P | ≥ 0

0, otherwise
(2)



Figure 3: Heatmap construction e.g., with 3D point cloud from
the radar (top view) (left), and constructed 2D heatmap (right).

Figure 4: The concatenated two-branch NN architecture em-
ployed for feature fusion, where the top branch is the FCN
aiming to process the BLE features, and the bottom branch is
designed as the CNN to handle the mmWave heatmaps.

where P is a set representing a point cloud with a population of
|P |. G(p) creates a 2D Gaussian kernel at point p. The resulting
heatmap, illustrated in Fig. 3, indicates a higher probability
for points with a larger population, such as the person cluster
in the middle, compared to the clutter on the left.

D. Fusion Neural Network Design
Fig. 4 shows the architecture of the designed fusion NN,

which contains two branches for different inputs. The top
branch is designed as fully connected network (FCN) for the
processing of the BLE feature, while the bottom branch is a
convolutional NN (CNN), taking the mmWave heatmap as the
input feature. After the convolution, this feature is flattened to
a linear layer and eventually coated with the output of the top
NN branch. The output of this NN is the (x, y, z) coordinate of
the estimated location. The neuron numbers of each linear layer
and the involved activation functions are annotated in Fig. 4.
Please note that, for BmmW and BmmW-LITE, the neuron
number of each layer in FCN is different due to the diverse
dimensions of the training features. Specifically, in BmmW, the
estimated azimuth angle θ, elevation angle ϕ, and corresponding
estimated distance to the objective of all anchors consist of the
ultimate training feature, which is a 3 ∗ 4 dimensional vector.
Hence, the number of neurons of each linear layer is 100,
100, 50, 50, and 50. Instead, in BmmW-LITE, the training
features are IQ samples with dimensions of 164 ∗ 4. Hence,
the number of neurons of each linear layer is set to 1000, 500,
100, 100, and 50. Adam [46] is selected as the optimizer of
the entire NN. The initial learning rate lr is the default value,
while it decays according to lr = lr∗0.3epoch//20, where epch
indicates the index of current training epoch, and // represents
the discard remainder operation. The mean absolute error is
the selected loss function for NN training, which is defined as

loss = mean(|(x̂, ŷ, ẑ) − (x, y, z)|), with (x, y, z) being the
ground truth coordinate and (x̂, ŷ, ẑ) the estimated coordinate.

E. Implementation of BLE and mmWave Data Branches
1) BLE Data Branch: The collection of BLE features is

performed using Silabs EFR32xG22 boards [28], which serve
as anchor nodes, and the implementation is performed by
employing the direction-finding solution provided by Silabs’
AoA implementation [44], [47]. The IQ sampling capability
is added to this stack to collect the raw measurements, as
detailed in [44]. The EFR32xG22 boards are equipped with a
4× 4 antenna array, but as we do not need to switch between
antennas in BmmW-LITE, we used only a single antenna for
IQ collection. The EFR32BG22 Thunderboard, detailed in [48],
is used as a target device that operates in the connectionless-
mode sending the CTE packets in periodic advertisements [44].
For the BmmW, the BLE stack implementation is the same,
but we used all the antennas on the array board to determine the
phase difference of the incoming signal, as antenna switching
is necessary to analyze the AoA technique [43].

2) mmWave Radar Data Branch: We use one IWR1843
radar from Texas Instruments, which operates at 77GHz to
81GHz. We define the size of the heatmap to be 55 × 35
pixels to cover the 5.5m× 3.5m region (see Sec. IV-A), so
that the resolution of the heatmap would be 0.1m per pixel.
To convert a point cloud to a heatmap, we project the point
cloud to 2D, define a Gaussian kernel of radius 4 for each
point, and add all the kernels together to the heatmap based on
their 2D coordinates. The resulting heatmap is normalized
between 0 and 1, where the value represents the radar’s
confidence in the target’s location. During data recording, we
first operate the radar towards the empty scene and record
the background reflection from clutters. This reflection is
converted to a clutter heatmap and subtracted from the actual
data recording. Then, we operate the radar at 25 frames/sec,
and stack 10 neighbouring frames into one data instance to
reduce the weights of outliers. Each data instance is converted
to a heatmap of the defined size. The heatmaps are fed into
one branch of the NN and fused with the BLE data branch.

IV. REAL-TIME DATA COLLECTION

This section describes the scenario employed to collect real-
time data for training and testing our neural network model.
A. Experimental Setup

We build a real-time indoor testbed for joint data collection
from BLE and mmWave, employing four BLE anchors at
the corner of a 5.5m× 3.5m area and placing the mmWave
transceiver in the middle between two BLE anchor nodes, as
presented in Fig. 5. The BLE anchors nodes are placed at a
height of 2m from the ground, while the mmWave transceiver is
placed at 0.8m. A highly accurate Optitrack system consisting
of eight cameras is erected around the edge of the site to gather
ground truth coordinates of the mobile target. We first calibrate
the Optitrack and achieve a localization accuracy of 0.44mm.

We perform a total of 12 trials for data collection, with a
person holding a BLE tag in its hand. In each trial, the person
follows a random path in the experimental area. Furthermore,



Figure 5: Experimental testbed used to simultaneously collect
the real-time data from both BLE & mmWave sources with a
moving target. The target, held by a human subject, follows a
random trajectory within the testbed arena.

we perform the trials with three different people having different
heights for the robustness of data collection. During this process,
the BLE anchors continuously receive IQ packets from the asset
tag (i.e., the target beacon), while the mmWave simultaneously
collects the reflected signals of the moving person. Eventually,
we collect 12 sessions through this experiment, with each
session recording two minutes of data from BLE, mmWave
radar, and Optitrack system. The total number of collected
data, after synchronization, is around 66000.

B. Dataset Collection
The methodology for dataset collection is illustrated in Fig. 5.

Three data streams (from BLE, mmWave, and OptiTrack) are
synchronized according to the UTC time stamping for training
the NN. For one sample, the BLE IQ features form a 164 ∗ 4
vector consisting of amplitude and phase information extracted
from the recorded I/Q samples. The BLE AoA features for one
sample consist of a 3 ∗ 4 vector with estimated azimuth angles,
elevation angles, and corresponding distances. As discussed in
Sec. III-E2, one mmWave sample contains a 55 ∗ 25 ∗ 10 array
as the feature. To evaluate the effects of the mmWave signal in
different regions, the entire experimental area is divided into
two parts: the mmWave strong area, which is the square area in
front of the mmWave board (with a size of 3m× 3m, marked
in light green); and the mmWave weak area, which is far from
the mmWave board (marked in light yellow). This division
is necessary because ≈ 48% of the 66000 data instances of
the mmWave radars fail to detect the target person at all,
confirming the argument that the mmWave radar alone has a
limited range/angle of view, thus emphasizing the importance
of combining multiple technologies in BmmW.

V. EXPERIMENTAL EVALUATION

This section describes the localization performance metric and
demonstrates the achieved 3D localization for a mobile target.

A. Evaluation Metric
The model evaluation is conducted on a server with Intel

2 E5-2640v4 CPU, and 2 RTX 2080Ti GPU. The splitting of

the training and test dataset follows the 80%-20% principle.
For the model training and test, the batch size is set to 100, and
early stopping is adopted, with the stopping patience equal to
10. Meanwhile, in order to eliminate the effect of data splitting
in model performance, the 5-fold cross-validation scheme is
taken for every evaluation. The model performance evaluation
criteria in this paper is the Mean Localization Error (MLE),
which is defined as the averaged Euclidean distance between
the predicted location and the ground truth location among all
test samples, as shown in Eq. 3:

MLE =

N∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2/N (3)

where N represents the number of test data. It is worth
mentioning that the NN predictions (x̂, ŷ, ẑ) are raw predictions
without any further processing like smoothing or filtering.

B. Results
We evaluated the performance of BmmW and BmmW-LITE

with different numbers of BLE anchors, ranging from 1
to 4 represented as BLE∗k, where k indicates the number
of BLE devices used. The results of our evaluation are
presented in Tab. I, which shows the comparison of BmmW
and BmmW-LITE against results obtained without fusion with
mmWave radar. Feature fusion provides clear benefits for both
methods across all scenarios, with the highest accuracy gain
of 53.91% achieved in the case of three BLE anchors. The
highest accuracy achieved is 0.09m and 0.341m for BmmW
and BmmW-LITE, respectively, which is 80% and 60% higher
than that of classical BLE localization methods [5]. BmmW
provides significantly higher localization accuracy, especially
with an increase in BLE anchors. Moreover, by comparing
different rows in Table I, it is evident that the performance
improvement of the fusion NN model in the mmWave strong
region is greater than that in the mmWave weak region. This
is due to the decay of mmWave signals with increasing detect
distance. Although the mmWave radar may fail to detect the
person around half of the time, that information can still be
helpful as it indicates that the person may not be in the mmWave
strong area. The highest improvement in BmmW-LITE is
observed with 1 BLE anchor fused with mmWave heatmap,
which reduces error by 40.07%. Notably, even when using
a single BLE anchor, the fusion model achieves sub-metre
accuracy in all testing areas, with a maximum error of 0.73m.

In addition, we use the Cumulative Distribution Function
(CDF) to statistically evaluate the localization performance of
BmmW and BmmW-LITE in different scenarios, as shown
in Fig 6. The CDF results show that BmmW achieves
almost 90% localization accuracy within 0.5m in all scenarios.
Especially with the ‘BLE*4+mmWave’ scenario shown in
Fig. 6b (which corresponds to the fusion of BLE and mmWave
measurements when using 4 BLE anchors), the CDF curve
is extremely steep, demonstrating highly-accurate predictions.
BmmW-LITE achieves 60% localization accuracy under 50 cm
across all scenarios, and up to 90% when using four BLE
anchors. Furthermore, to visualize the 2D tracked trajectory,
we selected random predicted locations from the test set



Table I: The MLE (in metres) in the test set under different scenarios using BmmW model and BmmW-LITE model.
Area Method BLE*1 BLE*2 BLE*3 BLE*4

Entire

BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE
BLE alone 0.663 0.914 0.398 0.727 0.291 0.664 0.222 0.582

Fusion BLE & mmWave 0.643 0.731 0.320 0.578 0.134 0.428 0.107 0.369
Gains of Fusion over BLE 3.05% 19.94% 19.58% 20.57% 53.91% 35.55% 51.62% 36.53%

mmWave Strong

BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE
BLE alone 0.420 0.642 0.233 0.501 0.213 0.517 0.181 0.473

Fusion BLE & mmWave 0.331 0.385 0.227 0.341 0.191 0.398 0.090 0.362
Gains of Fusion over BLE 21.20% 40.07% 2.48% 31.95% 10.27% 22.97% 50.26% 23.40%

mmWave Weak

BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE BmmW BmmW-LITE
BLE alone 0.646 0.704 0.427 0.658 0.253 0.547 0.191 0.478

Fusion BLE & mmWave 0.524 0.656 0.426 0.502 0.242 0.464 0.148 0.402
Gains of Fusion over BLE 18.95% 6.87% 0.28% 23.67% 4.37% 15.28% 22.40% 15.90%

BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(a)

BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(b)

BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(c)

Groundtruth
Prediction

(d)
BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(e)

BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(f)

BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(g)

Groundtruth
Prediction

(h)

Figure 6: The Mean Localization Error (MLE) CDF of the BmmW and BmmW-LITE models in an entire area (a,e); in the
mmWave strong area (b, f); and in the mmWeak area (c, g). Comparison of the ground truth locations and NN-predicted
locations in a part of the test set for BmmW (d) and BmmW-LITE (h).

Table II: % increment in MLE for BmmW w.r.t. BmmW-LITE.
Areas BLE*1 BLE*2 BLE*3 BLE*4

Entire Room 12.12% 44.65% 68.65% 70.92%
mmWave Strong 14.01% 33.27% 51.94% 75.12%

mmWave Weak 20.1% 15.12% 47.74% 63.15%

and compared them with the ground truth locations. This
comparison is shown in Fig. 6d and 6h for the “Entire room with
BLE*4” scenario with BmmW and BmmW-LITE, respectively.
BmmW’s estimated trajectory closely matches the ground truth
trajectory. BmmW-LITE’s estimated trajectory also matches
the ground truth, but there are some out-of-the-box predictions
at certain locations hindering its performance. These outliers
can be removed in a post-processing step, if necessary.

C. Discussion and Future Work
Complexity. In BmmW, a mobile tag continuously sends CTE
packets: the latter are sent to a central server for NN model
training and validation. Despite complexity concerns for real-
world and real-time deployments, please note that the model
has a rather small size, and can be deployed on common edge

devices [49], [50] after network compression and pruning,
allowing inference time to approach real-time levels.
Accuracy vs costs. Tab. II quantitatively compares the per-
formance of BmmW and BmmW-LITE. Even though the use
of raw IQ measurements in BmmW-LITE causes a loss in
accuracy, it requires less computational efforts. In fact, BmmW
involves the use of AoA measurements obtained by running the
MUSIC algorithm, which has a complexity of O(N3), where
N is the number of antennas [51]. Moreover, BmmW requires
multiple bulky antenna arrays, whereas BmmW-LITE offers a
less complex, cost-efficient solution. Still, both methods offer
superior performance than the state-of-the-art [5], [6].
Scalability. However, the addition of more BLE anchors
increases the coverage area, but also incurs extra costs. We
tested BmmW with one office environment, the training and
testing were performed in the same environment, which may
lead to the unsatisfied generalisation ability of the NN. Hence,
more diverse data collections from different dynamic & large
indoor environments should be implemented in future work.
Clock-drift. Multi-modality sensing models may experience



clock drift caused by differences in sampling rates between the
modalities. BLE boards, on the other hand, have a predictable
curve of clock drift which can be used to mitigate this issue [52].
Additionally, addressing the discrepancy in sensing frequency
between diverse sensors can be investigated in future studies.

VI. CONCLUSION

Our paper introduces BmmW, a novel localization system
that combines the strengths of BLE 5.1 direction-finding and
mmWave radar technology through a DNN-based fused model,
achieving decimetre-level accuracy. We present two methods
for incorporating BLE data into the NN model: BmmW utilizes
ranging data, while BmmW-LITE uses raw IQ measurements.
Experimental results show that both BmmW and BmmW-LITE
sustain decimetre-level accuracy, with a mean localization
error of only 10 and 36 cm, respectively, an improvement
of 80% and 60% compared to classical BLE localization
methods. Moreover, 90% of the error is under 50 cm for both
approaches, making it suitable for mobile applications. BmmW
outperforms BmmW-LITE due to its additional processing
and data filtration, but BmmW-LITE offers a computationally
and cost-efficient system that eliminates the need for bulky
multi-antenna arrays. By combining BLE and mmWave radar
technology, BmmW overcomes the limitations of conventional
techniques and offers a practical solution for high-accurate
localization in ‘Beyond 5G’ wireless communication systems.
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