Dependable loT e
Communications 4

(Part Ill)

Carlo Alberto Boano
Graz University of Technology — Institute for Technical Informatics

» E-mail: cboano@tugraz.at
» Website: http://www.iti.tugraz.at

Tl SensorTags
CC2650

Kazan, Russia

=" Microsoft July 07, 2016

1 + + » *
W g s P B g
—

mailto:cboano@tugraz.at
http://www.iti.tugraz.at/

Dependable IoT Communications 1Y,

What did we learn so far?

= Contiki OS & CC2650 SensorTags programming

| ;51 fg

v/ * Wireless communication
(unicast & broadcast) X

v Reading sensors

v/ + MAC layer (selected aspects):
Energy-efficiency & Reliability

Microsoft Summer School on the Internet of Things (SSloT) Kazan, Russia - 7/7/2016

Dependable IoT Communications 1Y,

What did we learn so far?

\
= Connecting your network | -
to the outside World / VirtualBox 4 w
(J = example_node-red
Ceim _ # 6LBR-5SI0T16-vllova

== resources

(@ upload | 4 = example_node-red
b = slip-radio -~ Yoy o—)))) I = cc2bo-web-demo
: 4 [= slip-radio
(@ upload |

Lo H

SLIP Radio /

@Virtuawox

)
6LBR

Border Router (6LOWPAN <& IPVv6)

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications 1Y,

Agenda

= Routing & Application layer

> « CoAP & MQTT
 Node-Red

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications ﬂ'I;U

Starting back from the MQTT Example...

STAGE@

0 0 0

0
] f
0 0 0 @

0 | 0
0 | 0
0o | 0

Each group 0
on different
channel 0

There are 16
channels in the
2.4 GHz band
(11 - 26) ’

0

1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15

Dependable IoT Communications 1Y,

H Starting back from the MQTT Example...

= Border router PC: run 6LBR from provided portable Firefox
* http://[bbbb: :100]

uMarkust -:--El-g

)l.f' [Sensors - GLBR x"'\, [httpy//[aaaa=212:4b00:GEC X . 8
<« C #fi [[bbbb:100)/sensors.html & O m

6LBR
6Lowpan Border Router

System Sensors Status Configuration Statistics Administration
Sensors MNodetree PRR Parent switch Hop count

Sensors

Sensors list

Up Down
PRR PRR

aaaa::212:4b00:689:eb89 feB80::212:4b00:688:6107 [100.0% | 100.0% OK

Node Parent Status

Actions

Reset all statistics

GLBR By CETIC [documentation)
This page sent 17 times (0.41 sec)

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications 1Y,

Starting back from the MQTT Example...

= Border router PC: find out your current Wi-Fi address

. . | 52 - .
4l Wireless Metwerk Connection Status | Metwork Connection Details M
General MNetwork Connection Details:
Connection Property Value
IPv4 Connectivity: Internet Connection-specific DN. ..
IPvE Connectivity: Mo Internet access Description Irtel (R} Certrino(R) Advanced-N 6205
Media State: Enabled Physical Address GC-88-14-CE-41-50
SsID: Ms 2 DHCP Enabled fes
Duration: 00:25:05 IPvd Address 152.168.88.112
Speed: 240.0 Mbps IPvd Subnet Mask 2552552550
Lease Obtained giovedi 21 luglio 2016 08:05:52
Signal Quality: 5!!!! Lease Expires venerdi 22 luglio 2016 08:05:51
) i) IPvd Default Gateway 152.168.881
Details. .. Wirel P ti
is... || Wielesspropertes | IPv4 DHCP Server 192.168.88.1
Activity IPvd DNS Server 152.168.881
- IPvd WINS Server
Sent —— k,! —— Received MNetBIOS over Tepip En... Yes
Eﬂfm Linkocal IPvE Address fedl: 440e 9423 4150 bEb 612
Bytes: 2,826,505 | 10.187.141 IPvE Default Gateway
IPvE& DNS Server
['@Properﬁes] ['@'Disable] [Diagnose]
Close
Close

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications ﬁ!y

“ MQTT. Message Queuing Telemetry Transport

= Publish/Subscribe messaging protocol
« Example: broker forwards messages to all subscribed clients

* The publisher/subscriber model allows MQTT clients to
communicate one-to-one, one-to-many, and many-to-one

ClientC
‘ subscribe "temperature" "temperature" = "22.5"
Broker
subscribe "temperature publish “temperature” “22.5" "temperature" = "22.5"
- o
— S ——

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

TU

Grazm

Dependable IoT Communications

H Hands-on: BR on CC2650 SensorTags

= MQTT example: run the Mosquitto broker
« Extract Mosquitto zip file and run mosquitto.exe

CAUsers\Boano\Desktoph\S5I0T_2016%3-Dependable-loT-Communications-Part2ymosquittomosg... | = | & |£h]

m "

Dependable IoT Communications

TU

Grazm

Hands-on: BR on CC2650 SensorTags

= MQTT example: subscribing to any topic (#)

[~ WED=UCTNIO/ PTOJCLTCONTLN = TUIPSC OUN
R ——— | = g
Run IWindow] Help e Vicw
. 6' New Window - - - - m
Editor » A B Ant
i m h) project-confh 232 P n
Appearance »
.' e L -_ 2014 Toseoe. T ool n;nmnnts] P E‘? APITDD'S
Show View » Bg C/C++ Projects = bl GCes
: | . = CVS
Perspective » | B Console Alt+Shift+Q, C
| a [» = General
Navigation » ‘ f Include Browses [= Debug
| © Make Target el b (= Help
Preferences | g Navigator F/ B = Java
I5THderine NE | - : BC_d [» (= lawva Browsing
= Outl Alt+Shift+Q, O =
36 #define IE|™ o +Shift+Q 4 (= M2M
37 #define CC % Problem Details ©2 Paho MQTT Exerciser
38 #define CC (5. Problems Alt+Shift+Q, X b = Make
39 #define CC (5 Project Explorer b (= Plug-in Development
409 [Feccecca-a ' [C] Properties s b = Team
41 /* Enable/| © search AltsShift+Q, S F™MO
42 #define CC .. T
~ | v Tasks
43 #idefine CC T
44 $define CC Other... Alt+Shift+Q, Q R
45 #define CC. [ok][concel
46 [¥-c--ccciccciecmmccicmmsmemmseccmmscsanq

* Opening Eclipse’s Paho MQTT Exerciser

Microsoft Summer School on the Internet of Things (SSIoT)

Kazan, Russia - 7/7/2016

Dependable IoT Communications ﬁ!y

Hands-on: BR on CC2650 SensorTags

= MQTT example: subscribing to any topic (#)
* Opening Eclipse’s Paho MQTT Exerciser

'um{ [C++ - ssiot_2016/example_node-red/cc26xx-web-demo/project-conf.h - Ec

File Edit Source Rdacgor ' hgj gm dp
'rgv Iav’(;vw\'@v&?ng‘fv@v'#vOVQv.L

S I*| Problems | Tasks [Console [] Properties 2 Paho MQTT Exerciser 32

) « B6LBR PC: localhost
Broker address: localhost —
ey wf.: « Sensors: Wi-Fi
Username: address Of 6LBR PC
Password:
Keep Alive: 30
Clean Session: V]
LWT Enable: =
LWT Topic:
LWT Message:
LWT QoS: 0~
LWT Retain: El
[Connect] [Disconnect]

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications

Ty

Hands-on: BR on CC2650 SensorTags

= MQTT example: subscribing to any topic (#)
* Opening Eclipse’s Paho MQTT Exerciser

Eile Edit Source Refactor Mavigate Segrch Project Bun

]

Window Help

O LTS S S i T ey [Y O ridE Y Oy Qv e T G Ry e

|*! Problems J| Tasks [Console [T] Properties %5 Paho MQTT Exerciser 53

| Connection | Publish | Subscribe |
Subscribe
Topic: =
QoS 0 -
Subscribe Unsubscribe |

[2016/07/719 02:46:36.847] Attempting
[2016/07/19 02:46:36.854] COMMECTED =
[201&6/07/19 02:46:46.620] SUBSCRIBE
Topic: Hgn

Das: 0

Microsoft Summer School on the Internet of Thin

[2016/07/19 02:50:56.805] Actempting to connect to broker: tcp://localhost:1883
[2016/07/19 02:50:56.840] CONMNECTED - Client ID: carlo

[2016/07/19 02:51:03.35] SUBSCRIBE

Topic: ngn

QosS: 0

[2016/07/192 02:51:17.925] PUBLICATICN ARRIVED

Topic: "iot=-2/eve/acatus/fmc/json”

Payload: "{"d":{"myName":"TI CC2650 SensorTag","Seq £7":5,"Uptime (sec)™:121,"Daf
[2016/07/19 02:51:34.50] PUBLICATION ARRIVED

Topic: "iot-2/evt/scatus/fmc/json"

Payload: "{"d":{"myName":"TI CC2650 SensorTag","Seq &":6,"Uptime (=ec)™:135,"Def

\ 7 7

Dependable IoT Communications ﬁ-lﬁ-la"

Hands-on: BR on CC2650 SensorTags

= MQTT example: publishing data

» Toggling red LED of neighboring SensorTags
« Topic: iot-2/cmd/leds/fmt/Jjson

File Edit Source Refactor Mavigate Search Project Run Window Help
My] S rm N @ Gt O Qi
45' * | Problems .| Tasks Console [| Properties %S Paho MQTT Exerciser 7

({5 | Connection Publish | Subscribe

Publish
Topic: iot-2/emd/leds/fmt/json
Qo% 0 =
Retain: []
Payload: 0

Publish Payload |
File:

Publish File |

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications ﬁ!y

Hands-on: BR on CC2650 SensorTags

= MQTT example: publishing data
 Activating buzzer of neighboring SensorTags
e Topic: iot-2/cmd/buzz/fmt/json

B vospne -+ B

File Edit Source Refactor Mavigate Search Project Run Windew Help
N S-S ~minigar -G~ H~0"Q -
5'. * | Problems | Tasks [Console [T Properties &2 Paho MQTT Exerciser i3

Xy |Cnmuﬁm Publish | Sybseribe

Publish
Topic: iot=-2fcmd/buzz/fmt/json
Qos: 0 =
Retaim: ||
Payload: 1

| Publish Payload |
File:

_ PublishFile |

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

TU

Dependable IoT Communications Graza
Agenda
|
|

= Routing & Application layer

> Node-Red

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications TY

Node-Red

Visual editor that allows “wiring” of
loT devices and services

= Runs on cloud or on border router
(in our case on your notebook)

* Builds on NodeJS (JavaScript engine)

* Programs created using Drag & Drop

= Getting a flavour:
* Run nodered.bat

« Open a browser to
http://127.0.0.1:1880

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications 1Y,

Node-Red

» Example: smart thermostat

Temperature sensors
post temperatures to

the server Buildin.g
automation
server
Server
configures
radiator o |
3 JUUUbJJJJ' A

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable loT Communications ﬂ!y

Node-Red

= Example: smart thermostat

HTTP interface for the thermostat (reading cached) ‘

& - — T : 5 readTempResp]

@ No Ermror

extract fields (=]

COAP caching block (INSERT COAP IP HERE) ‘

CloE Dt odeey &
r Mockup control loop ‘

@ No Error
[7 TODO: ‘

@ setpoint18

Microsoft Summer School on the Internet of Things (SSIoT) Kazan, Russia - 7/7/2016

Dependable IoT Communications

Questions?

Microsoft Summer School on the Internet of Things (SSIoT)

Kazan, Russia - 7/7/2016

LT
W

> NODE-RED

\ GETTING STARTED

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

!

\

Q\
(}\ AGEND,.A

* K\; e
1\0 ABOUT NODE-RED (

/

O
®* Node-RED is a visual editor that allows “wiring” of loT devices and services
® It runs in the cloud, on your router or as in our case on your notebook

l ® It builds on NodelS (JavaScript engine)
®* Programs (called flows) are created using Drag & Drop

O

® You can use your JavaScript, HTML, CSS etc. skills to improve functionality

)/ 0

1\\5 NODE-RED — BUILDING BLOCKS C(

INPUT FUNCTION OUTPUT

MART THERMOSTAT

Temperature Sensors .

Tl SensorTags as

Tl SensorTag as “actuator”

- - =il © /D\

SLIP Radio 6LBR

Border Router (6LoOWPAN<IPv6)

Node-RED

1§ SMART THERMOSTAT

/
O

,_ ~ ®* Web Interface for configuration

3 c h“ - “t &om™ =

I ° SensorTag senses room temperature
l | H~un ® If the target is higher, turn on the

|

:‘ Current Target Temperature red LED (dely We hdve no mednS Of

10°C

®) | : heating in this demo)

|

1§ SMART THERMOSTAT

HTTPR interface for the thermostat (reading cached)

i ' @ No Error NG EfTOf
— S——1

setTemp http |
extract fields (¢
o osmg — Fimsgpayioad [
O [CoAP caching block (INSERT COAP IP HERE]

S5

=] " savetonode_temp

SMART THERMOSTAT

HTTPR interface for the thermostat (reading cached)

[readTemp ’__?j"_f s || StoTE
e ‘ @ No Error

[0S

A B
' 8 P

@ No Error

o 4
‘1 extract fields [~

S5

::' ﬁvl i*—"_‘ 3

@ No Error

TODO:

save to node_temp (. —

@ Mo Error

HTTP GET
Webinterface
with input form

SMART THERMOSTAT

HTTPR interface for the thermostat (reading cached)

[readTemp ¢ -—-g‘i“ \).~ store

@ No Error

HTTP interface for setting the target temperature

setTemp

 extract fields s

t€ osens — S IRIE] ®

CoAP caching block (INSERT COAR IP HERE)

.'\u Error

. set point1

S5

is——-:fx. - save to node_temp

.\v Error

@ o Error

HTTP POST for
changing the target
temperature

readTempResp J

—)

HTTPR interface for the thermostat (reading cached)

1§ SMART THERMOSTAT

@ No Error

setTemp ntp |
extract fields >- /
S .
“ ”
O [CoAP caching block (INSERT COAP IP HERE] CoAP GET “thread

which reads from the

S5

SensorTag

= R, - o0 —

\ b - @ No Error

TODO:

@ setpoint 18

SMART THERMOSTAT

HTTPR interface for the thermostat (reading cached)

reasrery —— R~ > R, —~— S WRAI — readrenresn ||
‘ @ No Error No Error
—]

setTemp

CoAP POST “thread”
which controls the

“heater” SensorTag

CoAP caching block (INSERT COAR IP HERE)

| — ———

ready | — . reque

" savetonode_temp ;i;-—-\‘@- 7> Miemperaturefiarget |\ —) diff

o @ o Error

set point 18

\

INSTALLATION

® Extract nodered.7z

Open folder and run

nodered.bat

®* Open a browser to

* DONE!

lle lcome to Hode—RED

[info]l Mode-RED version: vB_.14_4
[info]l Mode.js wversion: vb.2_2
[infol Windows_HNT 6.1.7681 iad2 LE
[info]l Loading palette nodes
[info]l Dashboard up and running
iotf—service—staging credentials not obtained...
neither iotf-service nor iotf—service—staging credentials were obtained...

Jul 16:53:34 — [warnl

Jul 16:53:34 — [warn] [rpi—gpiol Info = Ignoring Raspberry Pi specific node

Jul 16:53:34 — [warnl] [taill Hot currently supported on Windows.
Jul 16:53:34 [warnl

Jul 16:53:34 [info]l Settings file “UserssSchusss.node—red-settings. js

Jul 16:53:-34 [info]l User directory sUzserssSchusss . node—red

Jul 16:53:34 [infol Flows file “UserssSchusss.node—redsflows_fitipcH6?

.Jjson

7 Jul 16:53:34 [info]l Creating new flow file

7 Jul 16:53:34 [infol Starting flows

7 Jul 16:53:34 [infol Started flows

7 Jul 16:53:34 [info]l Server now running at http:--127.68.8_.1:188068

http://127.0.0.1:1880/

HELLO WORLD

® As with any proper language introduction we will do a simple hello world
® There will be no Smart Object involved in this, it is just to teach some basics

®* We will be using two nodes
® One input which generates a hello world message

® One output which receives and prints the hello world message
input - @ - output

“Hello World”’

HELLO SMART OBJECT ({

® Perquisites:
® You should have a working border router every two desks

® Ask your neighbor who runs the border router for his channel if you don’t remember

l ®* We will communicate with your SensorTags from Node-RED

® For this we will use the cc26xx-web-demo (please change the channel and
O DEVICE_NAME) and send data using MQTT (use the IP64 address of the

gateway) j

oS

%

1\\?3““ ?

/
O

® The hello world of embedded systems (thanks Arduino)

® This time we use the cloud to periodically blink the red LED of all SensorTags
l ® All the logic resides in the “cloud” (due to WiFi this means your notebook)

® A periodic “task” will create a new message and send it as a CMD to the Tag
O

®* We need some persistence to remember what was the last state (on or off)

O

1§ WEB INTERFACE AND API

%

Smart Thermostat Interface

®* HTTP is widely used for APIs of services in the cloud
Current Node Temperature

® Presentation of information can easily be done via HTML 30°C

® Node-RED comes bundled with a HTTP node

Current Target Temperature
®* URLs can be used as input nodes

o]
®* HTML messages can be used as response 30°C

30

® Node-RED uses {{ mustache }} as a template engine

®* We will now slowly create a simple Web Interface

O

1§ WEB INTERFACE AND APIl: MUSTACHE

<div class="row">
<div class="col-sm-12">
<h3> Current Target Temperature</h3>
<hl>{{target temp}}°C</hl>
</div>

</div>

%

K\)
1\@ ACCERL-O-LERT

O

® Simple cloud driven safety application

® After an initial “safe” position an alert goes off if the accelerometer is 5% off

!

Q

'm

1\\; EXAMPLE O — GETTING STARTED f

O
® In “Example 0” you will learn the basics of inputs and outputs and how to
connect nodes in Node-RED
®* We will learn about the most important imput and output nodes
l ® Notice: advanced input and output nodes such as databases will be covered
O later

)/ 0

les | | o | .o

1 EXAMPLE O — USER INTERFACE

« C f [)127001:1 w & O M =
=< Node-RED |
Flow 1 - info
input
Nod;}es Workspace Selec.'r a node on
O _ Nodes can be placed and connected the right to show

help in this pane

\

O

EXAMPLE O

&= Node-RED

=< Node-RED

v input

inject

catch

status
link
mqtt
http

websocket

tcp
udp
coap

| sernal

X

€« C A [§127.0.0.1:188C

Flow 1

inject

Select the inject node and drag it into the
workspace.

Notice on the right info pane you can now see
some information about this node.

Once placed the text will change to timestamp
which is the default mode for this node. It is
called timestamp as it produces a UNIX
timestamp when clicked (as message payload)

les | | o | .o

% & O M =

info debug

Pressing the button on the left side of the node
allows a message on a topic to be injected into
the flow.

The payload defaults to the current time in
millisecs since 1970, but can also be set to
various other javascript types.

The repeat function allows the payload to be
sent on the required schedule

The Inject once at start option actually waits a
short interval before firing to give other nodes a
chance to instantiate properly

The Flow and Global options allow one to inject
a flow or global context value

Note: "Interval between times" and "at a

specific time" uses cron. This means that 20
minutes will be at the next hour, 20 minutes

past and 40 minutes past - not in 20 minutes
time. If you want every 20 minutes from now -
use the "interval" option |
Note: all string input is escaped. To add a

carriage return to a string you should use a
following function

1\0 EXAMPLE O

® Input nodes:
* Create a message object (msg) which is processed along the path

® Can be interactive (inject), receive data from your flow or external data (HTTP, UDP....)

®* When you click the inject nodes button it will create a new message to its

output port

® This message is passed as an object (typically JSON) along the path to a
output node or the end of the path

%

o

timestamp Ig

EXAMPLE O — INPUT NODES

® Inject: Create a new message with static data (string, number...) or the current

timestamp as payload
® Catch: Catches errors thrown by other nodes and creates a msg with it
® Status: Similar to catch but with status type messages
® Link: Receives messages from any other number of link (output) nodes
®* MQTT: Subsribes to topics on a MQTT broker
® HTTP: Accepts HTTP requests (GET,POST,PUT) on a specified URL

e
{

inject

catch

status
link
maqtt

http

J

O

K EXAMPLE O — INPUT NODES
N\ {

* WEBSOCKET: Receives data using a websocket (URL can be configured) nebsocket
®* TCP/UDP: Accepts RAW data using a TCP or UDP port

tcp

udp

® CoAP: Provides a resource sing a build in server (URL, METHOD can be e
configured) CF bmot

senal

® IBMloT: Subscribes to IBM’s loT Message broker for a specified Device

ID
® Serial: Read raw data from a serial port j

\

O

EXAMPLE O

&= Node-RED

=<, Node-RED

v output
link
matt
_http response
websocket

tep

udp

r

X

€« C A [§127.0.0.1:188C

Flow 1

“pOI"‘I’S"

[¢]
timestamp

Add a second node called debug from the
output nodes (notice the info on the right
side changes again)

Use the cursor to connect the little “port” on
the timestamp with the corresponding
“port” on the debug node (do this by
clicking and dragging)

[mes] (=B

info debug
Node
Type debug
ID 754368d7.5e1dd8
» Properties

The Debug node can be connected to the
output of any node. It can be used to display
the output of any message property in the
debug tab of the sidebar. The default is to
display msg.payload

Each message will also display the
timestamp. msg.topic and the type of
property chosen to output

The sidebar can be accessed under the
options drop-down in the top right corner.

The button to the right of the node will toggle
its output on and off so you can de-clutter the
debug window

If the payload is an object or buffer it will be
stringified first for display and indicate that by
saying "(Object)" or "(Buffer)"

Selecting any particular message will

v

1§ EXAMPLE O

&= Node-RED X

€« C A [§127.0.0.1:188 - & O

O

=< Node-RED

coap
| CHE
serial e ' ®
timestamp | ——————— | Msgpayload
v output
e T3 1. Switch to the debug side panel (from
O 0 link | |nfo)
2. Click the red deploy button in the top
maqtt

right corner

Jhttp response
websocket
tep

udp

v

\

O

EXAMPLE O

&= Node-RED

€« C f

=<, Node-RED

udp

l coap

seria

’
' v output
‘ link

matt
Chttp response
[websocket
| o
—
\
\

X

(] 127.0.0.1:1880/#

Flow 1

timestamp

Your application is now running.
Notice that the button s
indicated by the blue square next to the

now active

timestamp. The output of the debug node
can be toggled on and off by pressing the
button next to it.

info

[ies | = [5 e

4._()57 =

debug

&= Node-RED X

This button is used to
clear all previous
deb

1\) EXAMPLE O il e

€ 2 € fi [[1270011880%

O

=<, Node-RED

Successfully injected: timestamp

Q Flow 1 info debug

udp

l coap

s 1467904748662

se

timestamp, | —————— MWYB&GI

=
=
=i

ik Homework: what happens if you press the
mat button on the debug and then click on the

|
|
' v output
|
|
|

(Jhttp response inieCT nOde?

)

\

[websocket
| tep

l
' udp
|

)

.

EXAMPLE O - TWITTER

®* Notice: you need to have a twitter account for this to work

®* Try to delete the input node and replace it by a twitter input node from the

social category (double click to configure)

® Log in with your account and select any hashtag (use something trending or

somewhat popular such as #Microsoft)
® Connect it back to the debug node and deploy

® You can also change the debug to display the entire msg object

EXAMPLE O — OUTPUT NODES

® QOutput Nodes:
® Receive messages from an input port and terminate the dataflow

®* The message is not just dropped but typically send over the network, stored or printed

® Output nodes receives data (typically in the form of a JSON obiject) passed along

the connector and processes it

* The debug node then prints a attribute /member of that object or the entire object

(the default is msg.payload)

® Most output nodes send the msg.payload over the specified protocol

timestamp — g - msg.payload =

* K\; e
1\0 EXAMPLE O f

/
O
®* Debug: prints the message or a member of that message to the debug side
pane optionally the console window Node-RED is running in e
link
® Link: Sends messages to one or more link (input) nodes e
l ®* MQTT: Publishes the message to the configured topic (can be overwritten g e
O by changing msg.topic)
® HTTP: Response: Sends a reply to a message created by a http input node j

)/ 0

% K\) v
1\) EXAMPLE O (

/
X * Websocket: Outputs data to a websocket ==
® TCP/UDP: Outputs the message over raw TCP/UDP ::,
® IBMIoT: Published the message as the configured device id on IBMs LN &
l Quickstart =
@ ® Serial: Sends the message over the serial port

O

%

1\\5 EXAMPLE O - SUMMARY

®* Node-RED allows for easy, graphical programming

® There are nodes that serve as inputs and outputs
® Inputs provide data which is passed along on the connector (dataflow)

® Outputs “terminate” a dataflow

® But wait there is morel

® Function blocks can be placed along a dataflow and have an input AND (one or more)

output(s)

K\; e
1\0 EXAMPLE 1 — FUNCTIONS f

O

® In the next example we will see how function nodes can be used to alter the

dataflow

® For this we will use a simple delay node which only affects the time data is

processed, not the data itself.

O_/

O ®* We will also see a few things about connectors that are possible in Node-RED

)/ 0

\

O

EXAMPLE 1

&= Node-RED X

=< Node-RED

;P

Flow 1

v function

function

template

delay

trigger

comment

http request

tcp request

switch

change

range

split

join

“ C A [§127.0.0.1:1880/%

timestamp | = = « delay — — - | msg.payload

Next add a delay function to our flow.
(Function) Nodes may be dragged onto
existing connectors in order to place them
between two existing nodes.

info

1467904746662

debug

K EXAMPLE 1
b Exal

[ERes] [B [
/ & Node-RED X

“ C A [)127.0.0.1:1880/# P& O™ =
Q Flow 1 4 info debug
v function

function

template

timestamp —— delay 55 msg.payload = | |

delay | (SN =i

trigger

comment

http request

Wait, but nothing happens when | press the

tcp request
S~ button...
s Notice: while waiting a blue square appears
= below the newly inserted function block when
i its “processing” our data.

join 2

[eeras.| | = |E] ‘-&J

K EXAMPLE 1
o | X

&= Node-RED X

€ C f [§127.0.0.1:1880/# : & () ~ =

O

=< Node-RED

I o]

Flow 1 info debug

v function

JcEdn 1467905749824

template

timestamp —— delay 5 s -

msg.payload
delay

trigger

- Of course our output appears once again,
® mpeqe; this time however delayed by 5 seconds.
Lets see if we can “improve” the delay a bit.
Double click the delay node to configure it

tcp request

switch

change

range

split

join -

\

O

EXAMPLE 1

/ & Node-RED x

€ - C A [1127.0.0.1:1880/#

=< Node-RED

~ function

I
o
X
o

trigger

comment
hitp request |
‘ (tcp request
switch
change
range
split

join

Edit delay node

debug

Cancel all flows | current flow || &

msg.payload : number

1467905749824

Delay message ¥

_ =
oy Seconds

(Optionally) 2. nodes

can be renamed

After changing the configuration
the flow must be deployed again
Afterwards test if the delay really
changed.

[eges] [E

K EXAMPLE 1
b Exal

/ &8 Node-RED x 1 8
~ C A [)127.0.0.1:1880/% & O™ =
O =<=_ Node-RED
Q Flow 1 info debug
udp z
e
| e _— | msgpayload | 1467912701241
v function J
template ~ delay1s — Jmsgipayioad =
; delay
Q LI In order to demonstrate how data is passed
— along connectors add a second debug node
Pt request | directly to the output of the inject node.
tep request The timestamp in the debug pane is the
\ ‘ switch same for both (as we only delay the
change transmission and don’t alter the data)]

[eges] [E

K EXAMPLE 1
b Exal

/ &8 Node-RED x 1 8
~ C A [)127.0.0.1:1880/% & O™ =
O =<=_ Node-RED
Q Flow 1 info debug
udp z
e
| e _— | msgpayload | 1467912701241
v function J
template ~ delay1s — Jmsgipayioad =
; delay
Q LI In order to demonstrate how data is passed
— along connectors add a second debug node
Pt request | directly to the output of the inject node.
tep request The timestamp in the debug pane is the
\ ‘ switch same for both (as we only delay the
change transmission and don’t alter the data)]

K EXAMPLE 1
o | X

[ges i B
/ &= Node-RED X | N
€« C A [}127.0.0.1:1880/% & O™ =
O =<, Node-RED
Q Flow 1 . info debug
udp -
| ! B T
serial
‘ 1467913033327
l v function
‘ timestamp — msg.payload sg.payload : numba
function 1 j 1467913033327
‘ template v delay1s (==
(delay
O : While we are able to individually turn on
(rigger |
— and off data a single debug node can be
e used to plot the data from multiple
ESu— sources. In terms of programming it is just
\ ‘ B called twice with the different messages
change as Cﬂ'gUmenf
range v »

K\) e
1\0 EXAMPLE 1 - SUMMARY (

/
O
®* With the help of function blocks data may be changed, delayed, routed ...
® Using these basics a lot of things are possible
l ® But right now we are still only clicking stuff in our browser...
® Shouldn’t it be the internet of THINGS?
O

® Please extract the mosquitto.7z and run mosquitto.exe (nothing but a black

window should appear on your screen when you start it) j

)/ 0

1\\5 EXAMPLE 2 - MQTT

/
O
® Recap:

* MQTT is a publish subscribe based application protocol

® It requires a broker (central server) that handles the routing of all messages

® Topics are hierarchical, you may subscribe only to the current level or all sub-topics by

adding a # at the end (only # will give you ever topic in “root”)

O ® Everyone gets his own broker in this example (mosquitto)

® Usually the broker sits somewhere in the cloud but for debugging reasons this is easier

®* Node-RED AND the SensorTag are clients for the MQTT broker

%

and Subscribing of What we

1\\5 EXAMPLE 2 - MQTT Handles Publishing

/|
messages used so far
O
Your ﬁ_\ / \ /ﬁ
colleague's .
W o Mosquitto
MQTT Broker Node-RED
localhost:1883 Visual Editor and
Framework
Links the loT dGLBR localhost:1180
v or your Border Router
[bbbb: :100]
®) notebook

= -

(

1§ EXAMPLE 2

|rgxm:§r_13.l DIE
/ / &= Node-RED x \. hd 1
| & C A [3127.00.1:1880/% % & O sl =
O =< Node-RED
Flow 1 Edit mqtt in node info debug
‘ input Canes —a all flows Tent | o
‘ i Q@ Server ‘ Add new mqtt-broker.. v|| #
| cateh L0
magtt £ Topic ’ ‘
status 3
@ Qos 2 v
link
¥ Name
matt
http . o
O Add and configure an new input
websocket
mqft node. This serves as an
tcp
input node for this example.
udp
Press the Pencil icon next to the
| “."'S[.
S add new mqtt-broker field
\ SR 4
‘ sefial
|

\

O

EXAMPLE 2

7

€ -

/ &2 Node-RED

x

/ L@Pj !@'!H_B\ .

=< Node-RED

0

\ 3 inject
i} catch
status
link
maqtt
http
7 websocket
| . tep
\' o
toap
(I

| sefial

C A [}127.0.0.1:1880/#

Fl

w e OM™ 5 0

mattin = Add new mqtt-broker config node info debug

Cancel Add all flows | current flow

Connection Security : Birth Message ‘ Will Message

Q@ Server

our IP here

Localhost or your machine or

[l Enable secure (SSL/TLS) connection
W Client ID

@ Keep alive time (s) | 60 [Use clean session

¥ Use legacy MQTT 3.1 support

© 0 nodes use this config

Flow 1 v

1§ EXAMPLE 2

/ & Node-RED x
€ - C A [1127.001:1880/#

O =< Node-RED

Edit mqtt in node

Q@ Server localhost 1883 vi|#

The red triangle should

0 .
disappear if everything is ok i
@ QoS 4 v
link
= ¥ Name
O http
e Select the new broker and
o enter # as the topic for this
o node.
| = Notice: # means subscribe to
\ O all and can be seen as the
serial “mother of all hashtags”

(s (=] B)

1§ EXAMPLE 2

/ &= Node-RED x L
“ C A [} 127.0.0.1:1880/3 e & 6 ~ =
Q Flow 1 4 info debug
udp b

| l Once connected all messages that are
Q | . published to the mosquitto running on the

local machine are shown here. Once again

(Jhttp response

Node-RED is only one client connected to the

websocket

broker just like the SensorTag will be one

tcp

\ = soon.

m v

1\\; EXAMPLE 2 — CC26XX-WEB-DEMO (

/
O
® Contiki includes a demo for cc26xx family of devices which the SensorTag is part of
® It contains a few services implemented as individual processes:
®* A HTTP server: Which can be used to read the sensors and configure MQTT
l ®* A CoAP server: This is used to read sensors and control the LEDs
* A MQITT client: This is used to publish all values to a broker and listen to control messages
O ®* A UDP to Serial server: Using a program like netcat you can write raw UDP data and the

SensorTag output it via the serial port. All incoming serial messages are transmitted via UDP

as well j
® A 6LBR client: This service uploads some statistics to the border router (such as PRR, Parent, ...)

EXAMPLE 2 f

® Open your eclipse and navigate to

contiki /examples/cc26xx/ cc2é6xx-web-demo
® In the mqtt-client.c change the broker_ip in line 66 to your (WiFi) IP

®* Compile and upload the software to the SensorTag
Notice: The IP address is in hex and prefixed with 64:ff9b (RFC6052)
Example IBM Quickstart: 184.172.124.189 - BS8AC:7CBD j

ed

51 * Note: If not able to connect; lookup the IP address again as it may change
“ It th s a broker IP setting saved on flash, this slue here will
/> & static const char *broker_ip = "0064:1f0b:0000:0000:0000:0000:b8ac:7cbd"™; (F

1\) EXAMPLE 2

O

® In order for the SensorTag to subscribe to a topics for commands also

comment the following lines in mqgtt-client.c

case MQTT_CLIENT_STATE_CONNECTED:

® Your line numbers might be different depending on your last changes (here

the old broker_ip was left in as a comment)

%

\

O

EXAMPLE 2

&= Node-RED

=<, Node-RED

udp

I coap

' serial
v output
link
{ matt
‘ http response
websocket

| &

udp

X

€« C A |[[}127.0.01:1880/#

Flow 1

————— msgpayload |

After some time your SensorTag should connect
to a/our border router (fast blinking) and once
connected to the gateway start searching for
the MQTT broker IP. Once the slow blinking
stops you should soon see a message like the
one shown here.

& 0O m =

info debug

{"a":{"myName":"TI CC2650
SensorTag"."Seq #"1,"Uptime

(sec)"62,"Def
Route":"fe80::212:4b00:688:6107"."RSSI
(dBm)":-67,"Battery Temp (C)":29,"Battery
Volt (mV)":3292."Air Pressure
(hPa)":979.09."Air Temp
(C)":34.03."Object Temp
437,"Ambient Temp

8."Light (Jux)"13.80."HDC
Humidity (%RH)":41.17,"HDC Temp
(C)":33.64."Acc X (G)"0.13,"Acc Y
(G)"0.04,"Acc Z (G)":-1.08,"Gyro X (deg
per sec)"-0.74,"Gyro Y (deg per
sec)"0.41,"Gyro Z (deg per sec)"-0.58}}

EXAMPLE 2

® On topics: The SensorTag uses IBM Watson loT Syntax (Quickstart)

iot-2 /evt/status /fmt /json = iot-2 /evt/event_id /fmt /format_string

® jot-2, evt, fmt: fixed labels
® event_id: used to indicate the type of data being sent. A receiving application can then
select to receive by type of events. Here it is a status update.

* format_string: identifies how the payload is encoded. Any encoding can be used,

however “json” is treated specially by the built-in visualization of Quickstart.

{"d":{"myName":"TI CC2650
SensorTag”,"Seq #" 1, "Uptime

T L s LU m T 2
(S€() oL, el

Route" "fe80::212:4b00:688:6107" "RSSI
(dBm)".-67 "Battery Temp (C)".29,"Battery

1§ EXAMPLE 2

&= Node-RED X 1 =
“ C A [} 127.0.0.1:1880/3 & O™ =
O =<, Node-RED
Q Flow 1 < info debug
coap i

i
|
|
&
2
g

S acte {"d":{"myName":"TI CC2650 |

sernial x
SensorTag"."Seq #":22,"Uptime
' (sec)":721,"Def
v output | red on —~ Route":"fe80::212:4b00:688:6107"."RSSI
i : » _ (dBm)"--45 "Battery Temp (C)"-29."Battery
debug = //-- iot-2/cmd/leds/fmt/json | Volt (mV)":3292."Air Pressure
E @ rove — (hPa)"979.37."Air Temp
' link f redoff ©— (C)":34.55."Object Temp
. (CY'=2 "Ambient Temp

() matt (C)":3 68."Light (lux)"12.98.,"HDC

‘ : imidity (%RH)":40.89 "HDC Tem

If we add an mqit output node (same broker ey s
http response (C)"34.08."Acc X (G)"-0.93."Acc Y

with the topic: iot-2 /emd /leds /fmt /json) we (B sace 2 (Gyaiar gga X (08

per sec)"-0.92,"Gyro Y (deg per
sec)"0.25,"Gyro Z (deg per sec)":-0.46}}

websocket

| o are able to switch our red led on (injecting a
i String with 1) or off (“0”). Don't be fooled by

) the format identifier of JSON, it is just a
seris String. | s

e

O

O_/

1\\; EXAMPLE 2 - SUMMARY

® This time we have interaction with an loT device (SensorTag)

®* We could now go ahead and build a flow that e.g., twitters our (room)
temperature (or even better throw one in the freezer with a bottle of vodka

and twitter that)

® Sadly if we want to embed the information in a interface we need some sort

of storage or delay all http requests until the SensorTag publishes again

%

1\\5 EXAMPLE 3 - PERSISTENCE

/
O
®* There is a storage connector for many database solutions (MySQL, Posgre,
MongoDB) as well as file storage in several formats (SQLite, JSON, Plain)
®* We included only a few that can be used without a dedicated server
l ®* More can be found at
o ® To install npm install [name] please run a emd prompt and “run” nodevars.bat

® In this example we take a look at the JSON storage as we already get the

data in that format from our node

%

http://flows.nodered.org/

\

O

EXAMPLE 3

/&2 Node-RED
‘4 =< Node-RED

storage

‘ file

Dataln

sqlite

o s

DataOut
~ analysis
sentiment
advanced
watch
'EEZ)!:BI,C",-
exec

sensoriag v

x |

\

|-

| € C A [}127.0.01:1880/#

Flow 1

ot-2/ey

Edit Dataln node

= Collection Add new json-db-collection.. v

™ Name

Data Path

Merge Data

By default, the node will override the old data with the new one. If you
check "Merge Data". it will merge the new one with the old one and
save it.

Similar to the mqgft node the
Dataln node also needs to be
configured before use. The
Data Path is relative in the file.

info

i [2Edes [B
% & 0™ =
=/ Deploy ~ —
debug

\

O

EXAMPLE 3

&= Node-RED x \ - 1
« C A [4127.00.1:1880/# & O0OMm = |
,1 =< Node-RED =" Deploy ~ = |
' Flow 1 ialn > Add new json-db-collection config node info debug ’
storage) m o |
4 i ™Name Sensortag
Dataln
joi-2/ey Collection Sensortag
sqalite
¥ Direct save on file
file
By default, the node will save the collection on the file after you push
i DataOut new data. The collection can't contain any whitespace.
v I s . .)
g This will create a file called
SensorTag.json in .node-red/JsonDB
advanced folder in our home folder which for
with Windows is:
feedparse %HOMEPATH% \.nOde'red\JsonDB
sensoriag - -
70.0.1-1880/ “*9 nodes use this config Flow 1 v

\

O

EXAMPLE 3

& Node-RED

=< Node-RED

link
matt
(http response
websocket
tcp
udp

serial

v function L

X

€« C A |[[}127.0.01:1880/#

Flow 1

iot-2/evt/status/# | &
.
@ co 3
timestamp — "M =y
g msg.pay ’
@

If we now connect the Dataln to a mqtt input
and add a second path with an inject, a
DataOut and a debug. Don'’t forget to
configure the DataOutf to the same
collection as before. If you now press the
inject you should see the last data sent.

(s | (o [iE) [

Y& Om =

info debug

{"d":{"myName":"TI CC2650
SensorTag"."Seq #":84."Uptime
(sec)"2374,"Def
Route":"fe80::212:4b00:688:6107"."RSSI
(dBm)":-50,"Battery Temp (C)":29,"Battery
Volt (mV)":3292."Air Pressure
(hPa)"980.08."Air Temp
3.67."Object Temp
00,"Ambient Temp
)":33.218."Light (lux)":120.32,"HDC
Humidity (%RH)":44.67,"HDC Temp
(C)"33.33."Acc X (G)"-0.64."Acc Y
(G)"-0.35,"Acc Z (G)"0.60,"Gyro X (deg
per sec)"-0.90,"Gyro Y (deg per
sec)"0.51."Gyro Z (deg per sec)"-0.51}}

\

O

EXAMPLE 3

! &2 Node-RED

=< Node-RED

function

function
t2mplate
delay
trigger
comment
http request
tcp request
switch
change
range

split

X \‘\ @ Google Hangouts

F €« C A [)127.001:1880/%

Flow 1

iot-2/evi/status

timestamp

Edit function node

¥ Name route & -

#~ Function

i 1 msg.datapath = "/"
2 return msg;

+ Date.now().toString()

Lets add a function block
with
between mgqtt and Dataln.
the Dataln
node to merge the data

the following code

Also change

¢ Outputs 1

See the Info tab for help writing functions.

Deploy '«

info debug

msg.paylosd : Object

{"1467957956790": "{\"d\":
{\"myName\":\"TI CC2650

SensorTag\" \"Seq #\":120,\"Uptime
(sec)\":3230,\"Def
Route\"\"fe80::212:4b00:688:6107\" \"RSSI
(dBm)\":-50,\"Battery Temp
(C)\":29,\"Battery Volt (mV)\":3292 \"Air
Pressure (hPa)\":980.17 \"Air Temp
(C)\":33.88,\"Object Temp
(C)\":24 656 \"Ambient Temp
(C)\":33.406.\"Light (lux)\":131.92 \"HDC
Humidity (%RH)\":43.70,\"HDC Temp
(C)\":33.54 \"Acc X (G)\"-0.63 \"Acc Y
(G)\":-0.32 \"Acc Z (G)\":0.63.\"Gyro X (deg
per sec)\":-0.76 \"Gyro Y (deg per
sec)\":0.31.\"Gyro Z (deg per
sec)\"-0.34}}", "1467957959290": "{\"d\":
{\""myName\":\"TI CC2650
SensorTag\",\"Seq #\":121 \"Uptime
(sec)\":3233,\"Def
Route\"\"fe80::212:4b00:688:6107\" \"RSSI
(dBm)\":-50,\"Battery Temp
(C)\":29,\"Battery Volt (mV)\":3292 \"Air

\

O

EXAMPLE 3

&= Node-RED

seral

| v function

function
template
delay
trigger
comment
http request
tcp request
switch
change
range

solit

X

€« C A |[[}127.0.01:1880/#

Flow 1

oy
iot-2/evi/status/# | —————— route N § |
2
(=)
timestamp — 1= 4 ~———(| msg-payload
@ NoE

You may have to delete the SensorTag.json
in order for it to merge properly or change
the Collection to a new one.

On the right side you can now see an insane
amount of data once you press the inject.

& 0O m =

info debug

(dBm)\":-50,\"Battery Temp =
(C)\":29,\"Battery Volt (mV)\":3292.\"Air
Pressure (hPa)\":980.17 \"Air Temp

Object Temp

)\":24 656 \"Ambient Temp
\":33.406,\"Light (lux)\":131.92 \"HDC
(%RH)\":43.70,\"HDC Temp

(33.54\"Acc X (G)\"-0.63\"Acc Y
(G)\"-0.32\"Acc Z (G)\":0.6 Gyro X (deg
per sec)\":-0.76 \"Gyro Y (deg per
sec)\":0.31,\"Gyro Z (deg per
sec)\"-0.34}}", "1467957959290": "{\"d\"
{\"myName\"\"TI CC2650
SensorTag\",\"Seq #\":121,\"Uptime
(sec)\":3233 \"Def
Route\"\"fe80::1212:4b00:688:6107\",\"RSSI
\":-50,\"Battery Temp
(C)\":29,\"Battery VoIt (mV)\":3292 \"Air
Pressure (hPa)\":980.14 \"Air Temp

Object Temp

\"Ambient Temp
)\":33.406,\"Light (lux)\":125.20,\"HDC
Humidity (%RH)\":43.70,\"HDC Temp
(C)\"33.54,\"Acc X (G)\":-0.46 \"Acc Y
(G)\":0.04,\"Acc Z (G)\":0.67

* K\; e
1\) EXAMPLE 3 - SUMMARY (

/
O
®* We are now able to store data, with this we can implement caching (only one
value) or a history
®* We wrote our first, simple javascript node
l ® But now the trusty old debug has finally reached its limits
O

® |t is time to learn some visualization

)/ 0

* K\) e
1\0 EXAMPLE 4 - GUI (

/
O
®* As Node-RED comes with its own webserver (used for the editor) it usually is
the easiest to add user interface using https as well
® For this basic knowledge about html is helpful
l ® As data source we will keep the flow from example 4
®)

)/ 0

\

O

EXAMPLE 4

&= Node-RED

=< Node-RED

)

link
matt
http response
websocket
fcp
udp

serial

v function

function

template

delay

trigger

X

“ C A |[[}127.0.01:1880/#

Flow 1

iot-2/evtistatus/# = route

timestamp -}

('4:;(;3 3
[get] /data O— 38 - =

This is bit more at once:

1. Add an input node
2. Add the usual DataOut
3. Add a function node

4. Add a template node
5

. And add a node

info

[(ees] (o] B [

&60m™ =

debug

* K\; e
1\) EXAMPLE 4 (

O

1. Configure the input node: URL = /data

2. Configure the DataOut to the Collection of example 4

l 3. Configure the function node and add the following code

. msg.mustacheFormattedData = { 'data' : [] };
for (var key in msg.payload) {
if (msg.payload.hasOwnProperty(key)) {
msg.mustacheFormattedData.data.push(
{
"key' : key,
'value' : msg.payload[key]
})s
}}return msg; ﬁ)

OVoOoONOTUVTE WN R

1\) EXAMPLE 4

O

4. Configure template node

<html>
<body>
This is the payload:
{1# 1}
<p></p>{{ T }
{{ TI</p>

{{/ 3}
</body>

</html>

/> Node-RED uses node Mustache.js as its template language.

%

!

)

coNOOuUVTA~hWNEBR

% K\) v
1\0 EXAMPLE 4 (

/
O °
® Explanation:
® The function node creates a new object under mustacheFormattedData.
Under this element a new object is added called data with the “type” list.
We now push the SensorTag messages the value of a new key value pair into the list with
the timestamp as key.
* The template iterates over the data list and for each key value pair prints a new entry in
O

the html. We could now properly parse the JSON in the value, add a table and other
fancy stuff but for this tutorial we just print each JSON we received from a SensorTag j

and the timestamp when we received it.

\

O

EXAMPLE 4

& Node-RED X/ = 127.00.1:1880/data

€ > C f [1127001:1880/data

This 1s the payload:

1467957956790

{"d":{"myvName":"TI CC2650 SensorTag"."Seq #":120."Uptime (sec)":3230."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-50."Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.17." Air Temp (C)":33.88,"Object Temp (C)":24.656." Ambient Temp (C)":33.406."Light (lux)":131.92."HDC Humidity (%eRH)":43.70."HDC
Temp (C)":33.54."Acc X (G)":-0.63."Acc Y (G)":-0.32."Acc Z (G)":0.63."Gyro X (deg per sec)":-0.76."Gyro Y (deg per sec)":0.31."Gyro Z (deg per sec)":-0.34} }

1467957959290

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":121."Uptime (sec)":3233."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-50,"Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.14." Air Temp (C)":33.88."Object Temp (C)":26.281." Ambient Temp (C)":33.406."Light (lux)":125.20."HDC Humidity (%eRH)":43.70."HDC
Temp (C)":33.54."Acc X (G)":-0.46."Acc Y (G)":0.04."Acc Z (G)":0.67."Gyro X (deg per sec)":69.64."Gvro Y (deg per sec)":-27.42."Gyro Z (deg per sec)":-8.16} }

1467957962290

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":122 "Uptime (sec)":3236."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-50."Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.11."Air Temp (C)":33.88."Object Temp (C)":25.343." Ambient Temp (C)":33.406."Light (lux)":158 56."HDC Humudity (%RH)":43.70."HDC
Temp (C)":33.52."Acc X (G)":-0.44."Acc Y (G)":0.12."Acc Z (G)":0.70."Gyro X (deg per sec)":11.51."Gyro Y (deg per sec)":-0.68."Gyro Z (deg per sec)":7.72}}

1467957992268

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":123."Uptime (sec)":3266."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-35."Battery Temp (C)":29."Battery Volt
(mV)":3292."Air Pressure (hPa)":980.13."Air Temp (C)":33.95."Object Temp (C)":24.281."Ambient Temp (C)":33.437."Light (lux)":167.36."HDC Humudity (%RH)":44.50."HDC
Temp (C)":33.58."Ace X (G)":-0.42."Acc Y (G)":0.26."Acc Z (G)":0.83."Gyro X (deg per sec)":1.535."Gyro Y (deg per sec)":-2.63."Gyro Z (deg per sec)":-10.61}}

1467958022389

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":124."Uptime (sec)":3296."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-52."Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.18." Air Temp (C)":33.96."Object Temp (C)":24.625." Ambient Temp (C)":33.468."Light (lux)":139.92 "HDC Humidity (%eRH)":44.01."HDC
Temp (C)":33.60."Acc X (G)":-0.62."Acc Y (G)":-0.32."Acc Z (G)":0.64."Gyro X (deg per sec)":-1.00."Gyro Y (deg per sec)":0.48."Gyro Z (deg per sec)":-0.43} }

1467958052359

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":125."Uptime (sec)":3326."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-50."Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.15."Air Temp (C)":33.96."Object Temp (C)":24.750." Ambient Temp (C)":33.468."Light (lux)":139.92 "HDC Hunmudity (%RH)":43.81."HDC
Temp (C)":33.60."Acc X (G)":-0.62."Acc Y (G)":-0.32."Acc Z (G)":0.64."Gyro X (deg per sec)":-0.70."Gyro Y (deg per sec)":0.29."Gyro Z (deg per sec)":-0.48} }

1467958082357

{"d":{"myName":"TI CC2650 SensorTag"."Seq #":126."Uptime (sec)":3356."Def Route":"fe80::212:4b00:688:6107"."RSSI (dBm)":-31."Battery Temp (C)":29."Battery Volt
(mV)":3292 "Air Pressure (hPa)":980.13."Air Temp (C)":33.95."Object Temp (C)":24.781."Ambient Temp (C)":33.468."Light (lux)":134.80."HDC Humidity (%RH)":43.62."HDC
Temp (C)":33.60."Acc X (G)":-0.62."Acc Y (G)":-0.32."Acc Z (G)":0.64."Gyro X (deg per sec)":-0.86."Gyro Y (deg per sec)":0.37."Gyro Z (deg per sec)":-0.40} }

%

EXAMPLE 4 - SUMMARY

® We have a simple example where we save data to disk

®* We use html for visualization of the stored data

® In order to convert the data a parse-able format we employ JavaScript

® This nicely formatted data is then “inserted” into our html file on every request

® Instead of printing all the data unprocessed we could also compute the

average of a value or the standard deviation.

1\\5 EXAMPLE 4 - JSON

O

®* If you want to share your code with others you can export it to your clipboard

and share any way you like. Try it by importing our version of example 4.

-/: Deploy ~

View

Clipboard Import
O . Library Export

Examples
Configuration nodes

Flows

Subflows

Node-RED Website
v0.14.4

[{"id":"11493ae5.d79af5","type":"mqtt in","z":"16afb134.e3f76f","name":"","topic":"iot -
2/evt/status/#","qos":"2","broker":"28b723ff.3b934c","x":159,"y":22,"wires":[["2f13c0f5.7a172"]]},{"id":"e 580f869.4
02c58","type":"Dataln”,"z":"16afb134.e3f76f","collection":"1050f1 5c.e0791f","name":"","update":true,"path":" /","x":59
9,"y":24,"wires":[},{"id":"f704461e.90a9d8","type":"DataOut","z":" 1 6afb 1 34.e3f76f","collection":"1050f1 5¢.e0791f""
name":"","path":" /" "error":false,"x":357,"y":81,"wires":[["d43d6531.749538"]]},{"id":"24a0f1f3.43f24e","type":"inject",
"2":"16afb134.e3f76f","name":"" "topic":"","payload":"","payloadType":"date","repeat™:"","crontab":"","once":false,"x": 1
58 "y" 82,"wires":[["'f704461e.90a9d8"]]},{"id":"d43d6531.749538","type":"debug","z":"16afb134.e3f76f","name":"","
active":true,"console":"false","complete":"false","x":560,"y":81,"wires":[1},{"id":"2f13c0f5.7a172","type": "funchon'
afb134.e3f76f","name":"route","func":"msg.datapath = \"/\" + Date.now().toString()\nreturn
"outputs":1,"noerr":0,"x":363,"y":23,"wires":[["'e580f869.402c58"]]},{"id":"b61c635.6dc7 aa", "type":"http
:"16afb134.e3f76f","name":" ," 1":" /data","method":"get","swaggerDoc":"","x":104,"y":139,"wires":[['f0b97b9.8
680088"]]} {"id":"fOb97b9.8680a88","type":"DataOut","z":"1 6afb134.e3f76f","collection":"1050f15¢.e0791f","name":
" "path"; "/" "error":false,"x":239,"y":137,"wires":[["454508de.d46628"]]} {"id":"bOb7caad.ea7ae8","type":"http
response ,"2""16afb134.e3f76f","name":"","x":608,"y":136,"wires":[[},{"id":"454508de.d466 28", "type":"function","z":"1
6afb134.e3f76f","name":"","func":"msg.mustacheFormattedData = { 'data’ : [] };\n\nfor (var key in msg.payload) {\n

if (msg.payload.hasOwnProperty(key)) {\n msg.mustacheFormattedData.data.push(\n {\n 'key' : key,\n
'value' : msg.payload[key]\n Hi\n N\nR\nreturn

msg;","outputs”:1,"noerr":0,"x":361,"y":136,"wires": [["65f9f089 e5dd5"]]},{"id":"65f9f089.e5dd5","fype":"temp|c're","z":
"16afb134.e3f76f","name":"","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":
"<html>\n<body>\nThis is the

payload:\n\n{{#mustacheFormattedData. dqfu}}\n<p></p>{{key}}
((vuIue}}</p>\n{{/mustucheFormq'r
tedData.data}}\n</body>\n</htmI>","x":487,"y":136,"wires":["bOb7caad.ea7ae8"]}{"id":"28b7 23f.3b934c","type
""mqtt-
broker","z":"16afb134.e3f76f","broker":"localhost","port":"1883","clientid":"","usetls":false,"compatmode":true,"keepaliv
e":"60","cleansession":true,"willTopic™:"","willQos":"0","willPayload":"","birthTopic":"","birthQos":"0","birthPayload":""},{ "id
""1050f15¢.60791f","type":"json-db-
collection","z":"16afb134.e3f76f","name":"SensorTag","collection":"SensorTag","save":true}]

EXAMPLE 5 - COAP

®* Sadly CoAP requires a “direct” connection between you and your SensorTag

This example can be tried when you do your projects with on of your tags as border
router

For this please start the provided Virtual Machine (VM) and connect a SensorTag to
the machine

* Open contiki/examples/ipv6 /slip-radio and change the channel in the project-conf.h
® Enter the same channel in the project-conf.h of the cc26xx-web-demo

® Channels may be from 11 to 26

* K\; e
1\0 EXAMPLE 5 - GATEWAY (

/
O
® Find a partner (better 2 or 3)
®* Program the slip-radio example with channel 11-26
l ¢ Start the VM with the SensorTag attached as “modem”
® The others program the cc26xx-web-demo example with the same channel
®)
® Take a look at] on the computer the VM is running on
® If no nodes show up under sensors something went wrong... j

)/ 0

http://[bbbb::100/

K\; e
1\0 EXAMPLE 5 - COAP (

® Unlike MQTT CoAP exposes the SensorTag to the internet directly which has its own
Problems (think denial of service attack)

® In our setup we use Node-RED as a proxy for CoAP therefore your applications or
Node-RED can still access the full functionality while we could use our knowledge of
l storage nodes to reduce the number of requests

® Recap:
® CoAP is a REST protocol
® Resources are identified as URLs j
®* On each Resource you can call GET, POST, PUT, DELETE as with any REST protocol (like HTTP)

)/ 0

1§ EXAMPLE 5

/8 Node-ReD x \ [Sensors - 6LER %\ [Index x p—

€ - C A [1127.001:1880/# & & O m s o=

O

=< Node-RED

)

D

Flow 1 Edit coap request node

udp

Cancel

ccap Your node address will
@ URL coap://[aaaa:i212:4b00:688:401]:5683/ well-know
L2 omat |) be aaaa::[mac]

timestamp ~ —

= Method GET v
senal
() Observe? () Raw buffer?
v output
I Content
2 —_— format text/plain v
debug |
O T ¥ Name

magtt

Tip: Leave url or method blank if you want to set them via msg

properties.
hitp response

o CoAP has a registry of all
5 available resources that can be
udp GET from

T coap://[IP]/.well-known /core

\

O

EXAMPLE 5

i a [ites] (= B
@ Node-RED x \ [} Sensors- 6LBR X [Index
“ C A [} 127.0.0.1:1880/3 60O =
=<, Node-RED
Q Flow 1 info debug
udp b
coap =
_ . i { "nref": "/.well-known/core", "ct": "40" }, {
timestamp ——— coap request msg.payload ‘g "href": "/sen/batmon/temp”, "title": "Battery
serial . — 3 Temp", "™ "C" }, { "href"
"/sen/batmon/valtage", "title": "Battery
e Voltage", "rt": "m\" }, { "href"
v outpu . . e o . W} dmdlihw" "fitle™ " 25 O Ry
Using a simple inject to trigger the CoAP e (et B Vatvale YRkl
|~ = "t "text" }, { "href": "/dev/mdl/sw", "title"
‘debug = H "Software version", "rt": "text" }, { "href"
request and putting the output to our trusty b gl
link "seconds" }, { "href": "/dev/cfg_reset"
OId debug nOde. "title": "Reset Device Config: POST", "rt"
mqtt H H "Control" }, { "href": "/dev/ble_advd", "title"
We can see that the amount of data is a bit il el .
(Jhttp response <name>&mode=on|off&interval=<secs>"
to much and gets truncated but at least we i A
websocket o "itle": "Barometer (Temperature)”, "rt": "C"
see that every resource comes with a }. { "href- "/sen/bar/pres". "ttie"
tcp "Barometer (Pressure)”, "rt": "hPa
description, its path and its unit. (hectopascal milibar)"}, { "href
udp "/sen/tmp/amb", "title"- "Temperature
(Ambient)", "rt": "C"}, { "href"
m "/sen/tmp/abj", “title": "Temperature
) (Object)"

\

O

EXAMPLE 5

&= Node-RED

=< Node-RED

senial
output

debug
link
matt
hitp response
websocket
lcp
Lidp

R

Cbmet [

€ C A [127.0.01:1880/#

[mies] (o] . [

x \ [Sensors - 6LER X\ [Index X
wé& OMm s 02
=" Deploy '~ .
Flow 1 Edit coap request node info debug ’
@ URL coap://[aaaa::212:4b00:688:401]:5683/Itr '
IS = Method POST v |
[Observe? Raw buffer?
i Content
format text/plain v
¥ Name

Tip: Leave url or method blank if you want to set them via msg
properties.

Now lets try with a POST
requiest to coap://[IP]/It/r

It stands for LEDs toggle and r is
red

1§ EXAPLE 5

@Node-RED na
“ C A [§127.0.0.1:1880/% w & OoOMm 5 @ =
O =<=_ Node-RED == Depoy ~ @ = ’
Flow 1 Edit inject node info debug
oap ‘ G
¥ Payload [+ timestamp ‘
o flow.
timestamp = Topic
serial global.
C Repeat %, string
« output
| % number 1. Choose number
i ® boolean
¥ Name

O link {} JSON

Note: "interval | timestamp ind "at a specific time" will use cron.

magtt ;
. See info bOX TOlwwcwmes

hitp response

Configure our inject node to

websocket

number and set the payload to 1

\

O

EXAMPLE 5

&= Node-RED

=<2 Node-RED

udp
coap. :
serial
v output
s [
link
maqtt
(Jhttp response
websocket

tcp

udp

X \ [3 Sensors - 6LBR X [Index

< C A [1127.0.0.1:1880/#

[Sen] (=] B e

v & O M =
|
Flow 1 = debug
1 ———— | coap request ‘msg.payload ‘g

Notice that (if everything works correctly)
that ever time you press the inject the red
LED on your SensorTag switches on or off.
Even though a debug node is connected
there is no output as we use a POST
command

1§ EXAMPLE 5

—_— . o] [B |
/] & Node-RED x \ [} Sensors - 6LBR x { [Index X
- \ -
« C A [}127.0.0.1:1880/% & O0OMm =
: =< Node-RED =" Deploy ~ —
Flow 1 oap In > Add new coap-server config node info debug ’
|
inject g
A Name localhost
cateh
‘ Port 5683
tatu
CoAP is based on UDP so you may need to open a UDP port in your
link firewall.
&0
mat Add a new node, |
|t . I
®) i configure a new CoAP server
websocket

(Any name and default port). Set
B the URL to /test and the method
o to POST. On the CoAP request
- node change: IP = 127.0.0.1,
payload = (string) “hello” and
URL also to /test.

© 0 nodes use this config Flow 1 v

\ 0 dbmist

serial

\

O

EXAMPLE 5

[s, | = |:E] ‘—E&-J
&= Node-RED x \ [} Sensors- 6LBR 3 Indey
« C A [)127.0.0.1:1880/% 60O =
=< Node-RED
Q Flow 1 info debug
v input
inject
catch (undefined)
1 p—— coap request —
status \";\ e
= msgpayload
link .‘(’
[POST] /it A//
maqtt
http
E— So while we don’t have connection to your
= SensorTag right now we can still play around
5 with CoAP as a protocol. But somehow our
e payload of 1 does not appear but rather
T e “undefended”. Lets configure the debug node
sera to complete msg object.

e

O

MPLE 5

[- (s [
&= Node-RED x \ [} Sensors- 6LBR [Index X o
“ C A [127.0.0.1:188 60O =
=< Node-RED
Q Flow 1 info debug
v input
inject (undefined) i
catch
1 | £0ap request —_ :
o \ {"req" { "_readableState": { "objectMode"
o “\, 7 false. "highWaterMark": 16384, "buffer™ []
link (/‘ d "length": 0, "pipes": null, "pipesCount": 0
& __/ "flowing": null, "ended": false
= [POST] /It "endEmitted": false, "reading": false
i "sync™ true, "needReadable™ false
hit . o "emittedReadable": false
i So there is a lot of data in the debug but most "readableListening" alse
Wehsocket o . . "resumeScheduled": false
importantly there is a req(uest) element. This “GefaultEncoding” "utfE", ranOut" faise
e . . . "awaitDrain": 0, "readingMore": false
. request has a payload which is in the form of "decoder” null, encoding” null}
udo "readable”: true, "domain™ null, "_events"
a Bytearray. We therefore need a function to . "_eventsCount"- 0, "payload" { "type"
"Buffer”, "data" [] }. "options": [{ "name"
— convert it to a String for us: “Uri-Path, “value" { "ype": "Bufter”
. , , "data" [108. 116]} }. { "name": "Uri-Path"
_ msg. Pay103d=msg .req. payload * toStr'lng(utfs) 5 "value": { "type": "Buffer”, "data" [1141} }
. return mseg: { "name" "Content-Format", "value"
i &3 "text/plain” }]. "code": "0.02", "method"
. ~ "POST"

\

O

EXAMPLE 5

&= Node-RED

=< Node-RED

link
matt
; Ihttp response
websocket
tep
udp

senal

v function

function

template

O GitHub - mcollina/node-c X [Sensors - 6L8R X [Index

€ > C A [1127.00.1:1880/#

[Sen] (=] B e

node.js - convert strean

Successfully injected: hello

Flow 1

hello coap request

[POST] ftest - — msg.payload | =

Using this method you could now test your

Flow without having a SensorTag available

reachable.

& O™ =
info debug i

hello

or

* K\; e
1\0 EXAMPLE 5 - SUMMARY (

/
O
® CoAP allows us to directly communicate with a Smart Object (no
broker /server needed)
® Unfortunately we did not bring a global prefix with us so we have to make
l due with our gateway solution per group
O ® For testing and bidirectional communication we added a CoAP input node

® But how does contiki know what to do with /It/r 2 j

)/ 0

EXAMPLE 5 — RESOURCES (MAKEFILE)

REST _RESOURCES DIR = ./resources

REST_RESOURCES FILES += res-leds.c res-toggle-leds.c res-device.c
REST_RESOURCES _FILES += res-sensors.c res-ble-advd.c res-net.c

PROJECTDIRS += $(REST_RESOURCES_DIR)
PROJECT_SOURCEFILES += $(REST_RESOURCES FILES)

REST Engine shall use Erbium CoAP implementation
APPS += er-coap
APPS += rest-engine

1§ EXAMPLE 5 — RESOURCES RES-LEDS.C

static void

O res_post_put_handler(void *request, void *response, uint8 t *buffer, uintl6_t
preferred_size, int32_ t *offset) {

size t len = 0©;

const char *color = NULL;

uint8 t led = 0;
int success = 1;

:L const char *mode = NULL;

O if((len = REST.get query varia uest, "color", &color))) {
if(strncmp(color, "r", len) == 0)
led = LEDS_RED;

} else if(strncmp(color, "g", len) == 0)

///;) if(success & & (len = REST.get post variable uest, "mode"”, &mode))) {

1\\5 EXAMPLE 5 — RESOURCES RES-LEDS.C CONT. f

#define RESOURCE_PARAMS "r|g"

RESOURCE (res_leds,
"title=\"LEDs: ?color=" RESOURCE_PARAMS ", POST/PUT mode=on|off\";rt=\"Control\"",
NULL,
res_post put handler,

res_post put handler,

NULL);

#Hdefine RESOURCE(name, attributes, get_handler, post_handler, put_handler, delete_handler)

From contiki/apps/rest-engine/rest-engine.h /

%

1\\5 EXAMPLE 5 — RESOURCES COAP-SERVER.C (

/
O
® In the cc26xx-web-demo example a file called coap-server takes care of the
initialization of the rest engine and registers resources to it
® For the res_leds this is done by calling
l rest_activate_resource(&res_leds, "It");
@ ®* Where the first argument is the name defined in the RESOURCE and the

second is the path of the resource relative to root j

)/ 0

1§ EXAMPLE 5

[L - - " - s i - ¥ = laties] oo |
/ / &= Node-RED X "‘\ () GitHub - mcoliina/nede- X | [Sensors - 6L8R X [Index node.js - convert streame X
€ > C A [1127.001:1880/# o ‘ 0 & A =
O =< Node-RED
| ‘ Flow 1 Edit coap request node info debug
output vone all flows a
debug
@ URL coap://[aaaa::212:4b00:688:401]:5683/It?color=r
link hey
= Method POST v
maqtt
(] Observe? (] Raw buffer?
http response
I Content
Hobsoiiot [POST] /test format text/plain v
O cp ¥ Name
udp : ;
Tip: Leave url or method blank if you want to set them via msg
mode=0 properties. !
senal .
; As with HTTP REST has two
« function mode=on

methods of submitting data:
e * Via the URL (here)
template * VIG the PGYqud

1§ EXAMPLE 5

7

— N — s =@
/ &= Node-RED X\‘.\OGnHub-mcollina/‘node~ x { [Sensors - 6LBR X ' [Index X ' = nodejs - convert streame X
| € 5 ¢ A [[7127.001:1880/% & O M 5 m o=
O =< Node-RED =" Deploy ~ = |
i Flow 1 Edit inject node info debug :
[i
[~ output Cancel m all flows rent f a
debug
¥ Payload ~ % mode=on
link hellg ’
= Topic |
‘ maqtt
C Repeat none v
http response
SaaT] fest | Inject once at start?
websotket [ROST] dest
¥ Name
O li‘r,
udp Note: "interval between times" and "at a specific time" will use cron
- - See info box for details.
\ﬁFJ mode=off
A R Sl . . o o
| This time we need two injects
sena
configured to String with a
function mode=on “ ”
Payload of “mode=on" and
function " _ 1]
mode=off
template

1\\; EXAMPLE 5 — SUMMARY AGAIN (

/
O
®* You now know how contiki handles resources for REST with CoAP
®* Adding a new resource file simply requires adding it to the Makefile and
activating it in coap-server.c
l ® Resources have a identifier and four function pointers (GET,POST,PUT,DELETE)
O

® If a resource does not have one of these handlers register NULL instead

)/ 0

K EXAMPLE 6 - QUICKSTART
A\ (

O
® Both approaches to interact with out Smart Object so far required a
dedicated gateway and used 6LoWPAN over 802.15.4
® For some projects this is not an option though
l ®* The SensorTag comes with a preinstalled firmware (cc2640_SensorTag.hex)
O which allows for a smartphone to connect to the tag and act as gateway

® In this next example we will use this firmware j

)/ 0

O

% %\ v
1\0 EXAMPLE 6 f

®* Get the SensorTag app from the AppStore

#_ Download on the

@& App Store

%

EXAMPLE 6 (

- vodafone UK = 00:06

® Enable the Cloud View slider < sensorTag
Cloud View
® Click the Cloud cell to show URL on iOS or click the open in . %

Browser link on Android

® Copy down your Device ID (again iOS click the cell on TI Simple Keys Service
n

Android its on the main screen) m i =

Ambient Temperature]

m
L

1§ EXAMPLE 6

&2 Node-RED % ¥) GitHub - meollina/no. X Y [Sensors - 6LBR X ¥ [Index % Y = nodejs- convertstre: X) [M I8M Watson IoT Platf

L C A @ https//quickstartinternetofthings.ibmcloud.com/#/device/c4be84725389/sensor/ w & OoOMm 5 @ =

O L | -

c4beB4725389 status.ambient_temp I've seen my data, what next?

Use your device in an
application created with IBM
Bluemix

«
/__/"

/ Click here for more details.
L

Go to your Bluemix account

SIGN UP

,_,// LOG IN
O Note: When you sign up for a trial you may
‘ have to wait up to 24 hours to receive your log-

— in information
Create an app using the Internet of Things
Starter from the Catalog
Event Datapoint Value
CREATE APP
y (=
\ slatus gyro_x e Note: You will have to name your app and wait
for a few minutes for it to start running
status compass_y 123.17 =
status humidRy 68.00 When your app is running, select the app
....... o . URL or type it into the browser to open the .
‘ > |
— T - — —

\

O

EXAMPLE 6

&= Node-RED X

=<, Node-RED

link
maqtt
http
websocket
tcp
udp

coap

serial

v output

link

maqtt

O Githiub - meollinaln : [Sensors - 6LER : [Index X S nodejs - convert stre
€ > C A [1127.001:1880/#

Flow 1

g

5 —
S

 msgpayad

Add an ibmiot input node and connect it
once again to a debug node. While not as
fancy as the web interface this allows us to
process the data in the cloud

Notice: This time the data is send using BLE
and the phone pushes it to the cloud

[mes] (o] . [

[18M Watson IoT Plat
& 0OM =

info debug

"822.43", "compass_z" "-133.33", "acc_z" a4
"0.08"} }

{"d" { "gyro_x": "-0.53", "compass_y"
"117.50", "humidity": "54.96", "acc_y"
"-0.07", "object_temp": "24.53", "acc_x"
"1.06", "light": "183.76", "gyro_z": "0.32"
"compass_x": "-98.50", "ambient_temp"
"28.41", "gyro_y" "-0.22", "air_pressure"
"822.43", "compass_z" "-133.00", "acc_z"
"0.08"}}

{"d" { "gyro_x":"-0.82", "compass_y"
"117.00", "humidity": "54.96", "acc_y"
"-0.07", "object_temp": "24.41", "acc_Xx"
"1.07", "light": "184.72", "gyro_z":"0.18"
"compass_x": "-99.67", "ambient_temp"
"28.41", "gyro_y" "-0.46", "air_pressure"
"822.27", "compass_z" "-132.67", "acc_z"
"0.08"}}

* K\; e
1\0 EXAMPLE 6 - SUMMARY (

/
O
® This time we published data without the use of a “dedicated” gateway but
used a simple smatphone
® Contiki’'s cc26xx-web-demo also publishes to IBM Quickstart by default
l ®* We could also publish from Node-RED to Quickstart for visualization
@ ® Using (paid) device registration we could employ encryption and run our

Node-RED on IBM’s bluemix as well j

)/ 0

* K\; e
1\0 EXAMPLE 7 - BLE (

O

® BLE seems to be a nice tool if a commodity hardware smartphone can act as a

gateway /border router

® Using a cheap USB BLE dongle we could also use a PC or Raspberry PI

(version 3 even comes with build in Bluetooth)

® Using a C.H.I.P for 9% (BLE build in) or a Pl zero (5$) with dongle (29$)

we can build a cheap gateway for a lot of sensors

®* Sadly Windows has a strange BLE stack so we bypass it

%

O

%

1\0 EXAMPLE 7 - BLE

® Requires:
* A compatible USB BLE (4.x) radio build in or USB Dongle

® Zadig tool to replace the driver with a generic WinUSB driver (allows libUSB to work)
® Depending on your hardware this may or may not work out

* If it does you may also use it for the project

\

O

EXAMPLE 7

[(eges] [E [
ENCde-?ED X O GitHub - mcollina/n [Sensors - 6LBR [Index node.js - convert st [18M Watson IoT Plat
€ > C A [1127.001:1880/# & O™ =
=< Node-RED
Q Flow 1 info debug
http
websocket ser g : |
________ = { "object™ 26.1, "ambient": 28.1 }
=8 sensorfag ———— msg payload 2]
B, B 000 ®cowmeced T = 9 9 -
{ "temperature": 28.2. "humidity": 55.4 }
coap o .
After a few seconds the Flow should indicate _
that the SensorTag is now connected. In that {pressiesong)
serial
case whenever a sensor changes we get an
v output . . . {OX%: = 0."z":-0.02}
update (per sensor with its name a msg.topic)
e Notice: This can be changed in the e
s configuration and only some sensors may be
i observed {x -50 2 ny 14331, 77" -:5.70 95}
http response
i s {V”ODjelzt" 2' 2 "améiem" 281}

* K\; e
1\0 EXAMPLE 7 (

/
O

® Sadly contiki has no BLE stack (yet)

® But using the cc26xx-web-demo we can send advertisemnets
l ® We can use these to send data (you should have seen this in the “lecture”)

® Using CoAP we can even change the message using 802.15.4 while BLE is still
O

enabled

)/ 0

\

O

EXAMPLE 7

http response

websocket

[(eges] [E [
ENCde-?ED X O GitHub - mcollina/n [Sensors - 6LBR [Index X = nodejs - convert st [18M Watson IoT Plat
€ > C A [1127001:1880/% & 0OM =
=< Node-RED
Q Flow 1 info debug
http)
websocket timestamp ~ ——— ~ Scan BLEs ——— msg.payload : |
= @ starte { "peripheralUuid": "c4be84725389"
"localName": "CC2650 SensorTag” }
udp Using a Scan BLEs node we get a message
coap for each device in range once (even if its
Do bmet localName should change)
e Notice: We can “restart” the reading by
- output sending a message to it with
s msg.payload.scan=false followed by
ik msg.payload.scan=true
matt

1\@ EXAMPLE 7 - SUMMARY ({

O

®* Node-RED can interact with smart objects using BLE and existing APIs (such as

Quickstart) to facilitate communication

®* While completely without gateway this is as close as we get without actually
l using WiFi in our nodes

® Tl released one such device recently called the
CC3200STK-WIFIMK or in short a WiFi SensorTag

Please notice the increased battery compartment size

1\\5 EXAMPLE 8 - PLOTTING

/
O
®* Sometimes a bit more fanciful visualizations can help a lot
® Quickstart is a good starting point but what if we want to run it locally or with
more traces/datapoints
l ® For the next example you may use any of the known data sources but as we

have not done anything with mgtt for a while we chose it

¢ has way more infos

if you need them for your project

%

http://flows.nodered.org/node/node-red-contrib-graphs

\

O

EXAMPLE 8

&= Node-RED

€ ->Cn

=< Node-RED

Q

v analysis =

sentiment

v advanced

watch

feedparse

exec

sensoriag

scan ble

v GatewayKit

iot
datasource

v network

ping

X \ k& Dashboard

1 127.0.0.1:1880/#

Flow 1

—— json el getRSSI ~ rssi

. The
function then assigns the RSSI value to the

Use mqft and parse its msg as

data element and creates a new timestamp
tstamp for the payload. The iot datasource
logs it (choose any name) to the dashboard

var point={"payload":{}};
point.payload.data=msg.payload.d['RSSI (dBm)'];
point.payload.tstamp= Date.now();

return point;

[s, | = |:E] ‘-E&—l

& 0™ =

1\0 EXAM_.PWLE 8

O

node-red-contrib-graphs

When you navigate to http://127.0.0.1:1880/dash you will be greeted by a
l empty dashboard. First create a New Dashboard with any name.

Next Create a new chart (the button is in the same position as the Create New
Dashboard was a few seconds ago)

O Select Line/Area Chart, give it any name and under add data source add the
one your created in the last slide
No other Values are required

http://127.0.0.1:1880/dash

\

O

EXAMPLE 8

&t Dashboard

C A [§127.0.0.1:188

Edit Chart

Plugin

Line/Area Chart ~

Datasources

Add datasources ~

rssi

Request data between now and...

Maximum number of datapoints (leave blank for no limit)

X Axis Label

Y Axis Label

(e (=] B e

&60m™ E

1\) EXAMPLE 8

e e e
E Node-RED X | k& Dashboard X \ » =
“ C A |[§127.0.0.1:1880/dash/board/0 wé& OM™ =
O |

node-red-contrib-graphs : any

=+ Create New Chart

After some time the data gets logged to the dashboard. This is by default not
persistent (and doing so would exceed the scope of this tutorial).

Notice: you can resize every chart in the dashboard by just dragging from the
bottom right corner

O

1\) APPLICATIONS

®* The SensorTag includes an army of

SeNnsors

® Your goal will be to leverage these
sensors and the inherent connectivity

to create an loT application

® The following slides will give some

(very basic) examples

%

%

APPLICATION 1
ACCELER-O-LERT

® This is a very simple (and due to the use of the default settings in the MQTT

config) slow example of a accelerometer based alert

® If the node experiences acceleration (even the standard 1G of the earth) that

exceeds a certain limit the alert goes off

® In order to spare our ears the we use the leds target instead of buzz for

our cmd (so only a red led instead of the buzzer will go off)

\ EXAMPLE 1 g
1\] ACCELER-O-LERT

O

Process Events £ } o £ 3 ’ 853 .
B N Error
Dl — PR —S 1 e <P - Sy
b e _— - X < L / ~
onnaciog L e 5

evaluate — alert

<<<<<<<<<<<<

\ Import JSON and
configure MQTT and DB

%

APPLICATION 2 (
SMART THERMOSTAT

®* While we lack the proper actuators for this example we can still build a simplified

demo (unless you get your hands on a heating/cooling element and maybe a relay

®* There are many solutions for such a problem

® Control loop on the device (simple PID controller with the set point changed using CoAP)
®* While somewhat impractical we could also put the control loop into the cloud (HVACaaS)

® ... like normal people, offline with a dial on the device for temp. (just kidding)

® For those not familiar with HTML/JS development there is a Bootstrap based GUI j

used in this example (feel free to modify and reuse it for your own projects)

K APPLICATION 2
1\] SMART THERMOSTAT import JSON and

configure COAP and DB

HTTP interface for the thermostat (reading cached)

iip i i 7 e B £
readTemp 3-“/_ store () or 2 : lh_ htmify ——— readTempResp

@ No Error @ No Error

HTTP interface for setting the target temperature

0 saveonoe emp — 5 R, . o

