
POLITECNICO DI TORINO
III Facoltà di Ingegneria

Master in Computer Engineering

Application Support Design for
Wireless Sensor Networks

Candidate:
Carlo Alberto Boano

Supervisors:
Thiemo Voigt

Pablo Suárez Hernández

Examiners:
Maurizio Rebaudengo

Ali Ghodsi

March 2009
Academic Year 2008-09

KUNGLIGA TEKNISKA HÖGSKOLAN
School of Information and Communication Technology

Application Support Design for
Wireless Sensor Networks

Candidate:
Carlo Alberto Boano

Supervisors:
Thiemo Voigt

Pablo Suárez Hernández

Examiners:
Ali Ghodsi

Maurizio Rebaudengo

March 2009
Academic Year 2008-09

To my family, for all their love and support

Preface

This Master project has been carried out at the Network Embedded System Group

(NES) of the Swedish Institute of Computer Science (SICS) and at Saab Security

in Kista, Sweden. My supervisors were Thiemo Voigt from SICS and Pablo Suárez

Hernández from Saab. Hardware, support and all the required resources were provided

by both organizations. This Master Thesis represents also the conclusion of my uni-

versity career at both Politecnico di Torino in Italy and Kungliga Tekniska Högskolan

(KTH) in Sweden, entered thanks to the Erasmus double degree program. My examin-

ers were Maurizio Rebaudengo from Politecnico di Torino and Ali Ghodsi from KTH.

The Networked Embedded Systems Group of SICS is located in Kista (Stockholm),

and it is an acclaimed and remarkable research group in the networked embedded field.

Their current research focus is on Wireless Sensor Networks and system software for

embedded networked devices. They conduct projects together with industry and aca-

demic partners from Sweden and across Europe, and have developed their own Oper-

ating System, Contiki, which is now one of the most popular among users and devel-

opers of Wireless Sensor Systems. Their software is used by hundreds of companies

worldwide in products ranging from pico-satellite systems and racing car engines to

development kits for embedded software and networked reconfigurable hardware. This

Thesis has been performed within the SICS Center for Networked Systems funded by

VINNOVA, SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera and T2Data.

Saab has been working for more than seventy years in the forefront of technology

developing solutions with the purpose to protect and prepare nations against threats.

Today Saab Security extensive experience is utilized into capable and affordable solu-

tions designed to meet with the growing security needs from the civil society. Based on

network centric technology, Saab Security can offer solutions that can improve flows,

vi

vii

secure facilities and detect dangers before they develop into real threats or disasters.

Solutions that brings a higher level of security at a lower cost and makes it possible to

handle crisis more effectively. By empowering society with the ability to act on differ-

ent situations with the proper resources, in time and in a coordinated way, Saab Security

contribute to the development of a safer society for all. Saab delivers solutions based

in WSN in a wide range of products and is interested in further development of this

technology especially in the fields of energy efficiency, robustness and surveillance.

Acknowledgments

This Master Thesis is the result of a long journey. It is not only the result of my

university career: it is rather the prosecution of what I began in the technical High

School Giancarlo Vallauri in Fossano, Italy, nine years ago.

My passion in computer science grew and matured actually there, and I decided to

became a student in computer engineering at Politecnico di Torino, where I took my

Bachelor and enrolled into this Master in 2006.

In this decade I met extraordinary and special people that deserve my gratitude, starting

from all my teachers in Fossano. Many people helped and supported me in the four

years spent in Turin, and I am grateful to all them. I want to explicitly thank Prof.

Paolo Montuschi, for supporting my decision to travel to Sweden and carry out the

joint Master with KTH.

I thus enrolled into this joint Master, which has now run to completion, after a fantastic

experience both in Torino and Stockholm.

I am proud to have carried out my Thesis in one of the most acclaimed and remark-

able research groups in the networked embedded field, and I am deeply indebted to

my supervisor Thiemo Voigt, for giving me this opportunity. I am also grateful for

the incredible motivation and enthusiasm he injected me throughout this Thesis, as

well as for giving me the opportunity to extend this Thesis work. I am also obliged

to all people of NES for creating a fantastic environment and for the infinite support

provided: Adam Dunkels, Fredrik Österlind, Joakim Eriksson, Luca Mottola, Niclas

Finne, Nicolas Tsiftes, and Zhitao He. A special thanks goes also to Anders Holst for

its precious help and to my roommates at SICS David Gustafsson, Jesper Karlsson and

Azadeh Abdolrazaghi for the six months spent together.

I would like to express all my gratitude to Saab Security, for giving me the possibility

of completing this Master Thesis on surveillance systems, and for all the hardware and

viii

ix

software support provided. In particular, I am really grateful to my supervisor Pablo

Hernández Suárez for all his help and support throughout the project.

I would also like to thank my examiners Maurizio Rebaudengo and Ali Ghodsi for the

help and feedbacks provided during these months.

After being in Stockholm for eighteen months, I must also thank all my friends there,

especially Alberto, for having mitigated the distance from my home country and my

loved ones.

While I am writing these ackowledgments, I still do not know what will come af-

ter this Thesis, and especially I do not know where. However, after working on this

Master project and discovering the Wireless Sensor Networks field, I got completely

hooked on it, probably because of the stimulating environment I have been working

with. Therefore, I have the feeling that my study journey has probably not come to an

end yet.

I finally want to dedicate this Thesis and all what will come after to my family: my

parents and my sisters. I could not reach such important results without them. Thank

you from the deepest of my heart, for all your love and support, and for have been so

close although so far away.

Carlo Alberto Boano

Stockholm, February 28, 2009.

Abstract

Despite the rising development, pervasiveness and research on Wireless Sensor Net-

works, there is no standard support for the wide range of applications. This impacts

the programming complexity, because developers may have to design specific solutions

also for the most common features.

In this Thesis, I provide a modular application support sub-layer for sensor networks

that provides network management and sensor data query primitives to the overlying

applications, increasing the robustness and simplifying developers’ work. I also design

and implement a deployment module to speed-up the deployment phases, decrease the

manpower involved, and increase the robustness of outdoor deployments. The applica-

tion support sub-layer includes self-configuration solutions such as an innovative rapid

channel quality assessment mechanism based on the LQI variance that can reliably

identify good links using a limited amount of packets.

xi

Riassunto

Nonostante il crescente sviluppo e diffusione delle reti di sensori, ancora non esiste

un supporto standard per l’ampia gamma di applicazioni esistenti, anche perchè la

ricerca si concentra principalmente nei livelli più bassi della pila OSI. Ciò va a incidere

sulla complessità della programmazione, in quanto gli sviluppatori si trovano a dover

implementare soluzioni specifiche anche per le funzionalità più comuni.

In questa Tesi, ho progettato ed implementato un application support sub-layer per

reti di sensori finalizzato a migliorarne la robustezza ed a simplificare il lavoro dei

programmatori, rendendo disponibile alle applicazioni primitive di gestione della rete

e interrogazione dei sensori. É stato anche progettato un modulo per velocizzare la fase

di deployment dei nodi, consentir un minor coinvolgimento di personale e ottimizzare

le prestazioni e la solidità delle reti di sensori all’aperto. L’application support sub-

layer che ho ideato include anche soluzioni per l’autoconfigurazione dei nodi, come un

meccanismo per stimare rapidamente la qualità del canale radio basato sulla varianza

dell’LQI, che è in grado di identificare in maniera affidabile un buon canale utilizzando

un numero minimo di pacchetti.

xii

Sammanfattning

Trots den ökade utvecklingen, penetrationen och forskningen inom trådlösa sensornätverk

så finns inget standardstöd för det breda utbudet av applikationer. Detta påverkar pro-

grammets komplexitet då utvecklare måste designa specifika lösningar även för de mest

vanliga funktionerna.

I det här examensarbetet har jag designat ett modulärt applikationssupportlager för sen-

sornätverk som tillhandahåller nätverkshantering och grundläggande funktioner till de

överliggande applikationerna, vilket förbättrar robustheten samt förenklar utvecklarnas

arbete. Jag har designat och implementerat även en modul för att snabba upp utplac-

eringen, minska den involverade arbetskraften och öka robustheten av utplaceringar

utomhus. Applikationssupportlagret inkluderar självkonfigurationslösningar såsom en

snabb innovativ kanal kvalitets estimerare, baserad på variansen av LQI som pålitligt

kan identifiera en bra länk med endast ett begränsat antal mottagna paket.

xiii

Contents

1 Introduction 1
1.1 Problem statement . 3

1.2 Method . 4

1.3 Limitations . 5

1.4 Scientific contributions . 5

1.5 Outline . 6

2 Background 7
2.1 Wireless Sensor Networks . 8

2.2 802.15.4 and Zigbee standards . 10

2.2.1 IEEE 802.15.4 . 10

2.2.2 The Zigbee standard . 15

2.3 The Contiki Operating System . 22

2.3.1 Event-driven versus multi-threaded programming 23

2.3.2 The Contiki Kernel . 24

2.3.3 Static versus dynamic loading 25

2.3.4 Libraries . 26

2.3.5 Protothreads . 26

2.3.6 Communication support . 27

2.3.7 Energy estimation for sensor nodes 36

2.3.8 The Coffee file system . 37

2.3.9 Simulation in Contiki . 38

2.4 The Tmote Sky platform . 40

2.4.1 Sensors . 41

2.4.2 Microprocessor . 41

2.4.3 PC Communication . 42

xv

CONTENTS xvi

2.4.4 Power and voltage . 42

2.4.5 Radio and antenna . 44

2.4.6 External flash . 45

2.5 The ScatterWeb MSB-430 platform 46

2.5.1 Sensors . 46

2.5.2 Microprocessor . 47

2.5.3 I/O interfaces . 48

2.5.4 Power . 48

2.5.5 Radio chip . 48

2.5.6 Secondary storage . 48

3 Wireless Sensor Networks Application Layer 49
3.1 Generic design for a WSN application layer 50

3.1.1 Sensor Management Protocol (SMP) 52

3.1.2 Task assignment and Data Advertisement Protocol (TADAP) . 52

3.1.3 Sensor Query and Data Dissemination Protocol (SQDDP) . . 53

3.2 Middleware support for WSN applications 54

3.3 WSN application design challenges 54

3.3.1 Energy consumption and battery lifetime estimation 55

3.3.2 Battery modelling . 56

3.3.3 Robustness to the environment and autoconfiguration 60

3.3.4 Topology monitoring . 64

3.3.5 Deployment . 65

3.4 Consequences of the sub-layer introduction 66

4 Design and implementation 69
4.1 Sub-layer design . 69

4.2 The online battery monitoring . 72

4.2.1 Battery voltage . 72

4.2.2 Model creation and implementation 74

4.3 Logging module . 78

4.3.1 Sensor data log structure . 79

4.4 Deployment support module . 81

4.4.1 State of the art in sensor networks deployment 82

4.4.2 Towards quickly deployable sensor networks 84

4.4.3 Proposed validation process 85

CONTENTS xvii

4.4.4 Unpredictability of outdoor deployments 88

4.4.5 Design of the deployment support module 89

4.4.6 Channel quality assessment in indoor WSN 91

5 Evaluation 96
5.1 On-line battery monitoring module 96

5.2 Sensor data query module . 98

5.3 Deployment support module . 99

5.3.1 Experiences from outdoor expeditions 102

5.3.2 Temperature effect on the radio signal strength 105

5.3.3 Comparison of temperature and weather effects 109

5.4 Rapid channel quality assessment 113

5.5 Discussion with respect to robustness 117

6 Related work 119

7 Conclusions and future work 125
7.1 Future work . 126

Appendix 128

Bibliography 132

List of Figures

2.1 IEEE 802 Main standards . 9

2.2 IEEE 802.15.4 PPDU format. Adapted from the 802.15.4 standard [1]. 11

2.3 Comparison of the IEEE 802.15.4 and Zigbee standards OSI layers. . 13

2.4 Available formats for the MAC frame. 15

2.5 General format for the NWK frame and frame control fields. 17

2.6 APS frame format. Adapted from the Zigbee specifications [2]. 20

2.7 Event-driven versus Multithreaded flow. 23

2.8 The Rime stack architecture. 28

2.9 The Chameleon architecture. Adapted from Dunkels et al.[3] 32

2.10 Two applications communicating with Rime. The first one uses a mesh

routing protocol on top of the Rime stack and the second one uses the

Rime stack directly. Each communication path uses its own logical

channel. Adapted from Dunkels et al. [3]. 34

2.11 Front view of the Tmote Sky module [4]. 40

2.12 Back view of the Tmote Sky module [4]. 41

2.13 Internals of the ADC12 registers in the MSP430 microprocessor [5]. . 43

2.14 Front view of the ScatterWeb core board MSB-430 [6]. 46

2.15 View of the MSB-430-T Carrier Board with USB interface for UART

communication, JTAG interface for programming and debugging, bat-

tery holder and power switch. 47

3.1 Comparison between the layers in the TCP/IP stack and the OSI stack. 51

3.2 Typical discharging curve of voltage in Li-Ion and NiCd/NiMH batter-

ies. Taken from Behrens et al. [7]. 57

xviii

LIST OF FIGURES xix

3.3 Discharging characteristics of the voltage in rechargeable and non-

rechargeable batteries. Data is retrieved experimentally at 25◦C with a

current drain of approximately 31 mA. 58

3.4 Discharging voltage curve of batteries at different temperatures. Ex-

perimental data was taken using approximately 34 mA as current drain. 59

3.5 Discharging voltage curve of batteries with different loads. Taken from

the Duracell manual [8]. 60

3.6 Discharging voltage curve of a new and an old battery. In both cases

the battery voltage needs a couple of hours to stabilize to the real value. 61

3.7 Radio interference over one of the 16 radio channels in the 2.4 GHz

band. Data is retrieved over 48 hours and the pattern is regular: the

channel is noisy in daytime and noise-free during the night. 62

3.8 Radio interference over one of the 16 radio channels in the 2.4 GHz

band. Data is retrieved over 7 days and the pattern is regular: the chan-

nel is less noisy during the weekends. 63

3.9 WSN protocol stack. Taken from Akyildiz et al. [9]. 67

4.1 Design of my application support sub-layer. 70

4.2 Different voltage references can give different discharging curves for

the battery voltage. A good setting of the voltage reference in the ADC

of the microprocessor is indispensable for a correct estimation. 73

4.3 Data retrieved from the SHT11 sensors when used below their opera-

tive threshold. 75

4.4 Variance of the battery voltage of a battery just plugged in into a sensor

node. The voltage needs a couple of hours (transient time) to stabilize,

because the initial voltage retrieved is higher than the acutal one. . . . 76

4.5 Relationship between voltage, temperature, and residual current draw

available from the battery. Data is taken experimentally, and it is used

to construct the battery model for battery lifetime estimation module. . 77

4.6 Log file format. 80

4.7 Available data to the deployer through the deployment support module. 90

4.8 Relationship between LQI and PRR. Figure is taken from Rein [10]

and appears under explicit permission of the owner. 92

4.9 Relationship between RSSI and PRR. The figure is taken from Rein [10]

and appears under explicit permission of the owner. 93

LIST OF FIGURES xx

4.10 Relationship between the CCI (LQI) mean value and the CCI (LQI)

standard deviation. The figure is taken from Srinivasan et al. [11] and

appears under explicit permission of the owners. 94

5.1 Thermal excursion between day and night registered during an outdoor

experiment. The battery estimation may be strongly affected. 97

5.2 Current draw for writing operations is independent on the file size. Fig-

ure shows the energy consumed by CPU and Flash operations when

writing a cell of 12 bytes in the ST M25P80 serial flash of the Tmote

Sky platform. 99

5.3 Current draw when reading the whole log file. Time depends on the

implementation and on the file system internals. 100

5.4 Current draw of cpu operations and radio transmissions in the ’Ping

protocol’. Current draw is computed using Energest over a 5 seconds

time slot, assuming communications with only one node. 101

5.5 Current draw of cpu operations and radio transmissions in a new node

and an already deployed node when using the ’Ping Protocol’. En-

ergy is computed using Energest over a 5 seconds time slot, assuming

communications with 4 nodes. 102

5.6 Example of a grey area, reported in my outdoor expeditions. RSSI is

measured between two nodes at different distances. 103

5.7 RSSI and temperature sensed by two motes deployed in a wheat field

in Govone (Italy) over more than 48 consecutive hours. The pattern of

the two curves is almost identical. 105

5.8 LQI and temperature sensed by two motes deployed in a wheat field

in Govone (Italy) over more than 48 consecutive hours. The pattern of

the two curves is almost identical. 106

5.9 Radio signal strength variation with respect to the temperature in the

Tmote Sky platform. Temperature is measured using the SHT11 sensor. 107

5.10 Radio signal strength variation with respect to the temperature in the

MSB430 platform. Temperature is measured using the SHT11 sensor. 108

5.11 Effects of temperature, fog, rain and snow on the radio signal strength.

Experimental data is retrieved in a wheat field expedition during De-

cember in Govone (CN), Italy. 110

LIST OF FIGURES xxi

5.12 Effects of temperature, fog, rain and snow on the radio signal strength.

Experimental data is retrieved deploying the sensor nodes into two op-

posite buildings during the last weeks of January in Kista, Sweden. . . 112

5.13 Images captured from the webcam available in Kistavädret [12]. From

the bottom images it is possible to check the presence of fog and rain

in the deployed area. This figure appears under explicit permission of

the owner. 113

5.14 LQI variance over received packets in one of the worst channels during

the experiments. The straight lines represents the LQI variance value

after 256 packets, and its 80%. 10 packets are enough to get an LQI

variance higher than the 80% long-term value. 114

5.15 LQI variance over received packets in one of the best channels during

the experiments. The straight lines represents the LQI variance value

after 256 packets, and its 80%. 10 packets are enough to get an LQI

variance higher than the 80% long-term value. 115

5.16 Relationship between the PRR versus Noise and LQI standard devia-

tion. Data is retrieved from the daily average PRR of each channel in

the 2,4 GHz band. 116

List of abbreviations

A/D Analog/Digital

ACK Acknowledgment

ADC Analog to digital converter

AF Application Framework

AOA Angle Of Arrival

AODV Ad-hoc On-demand Distance Vector

APDU Application level PDU

APL Application Layer

APS Application Support Sublayer

CCA Clear Channel Assessment

CCI Chip Correlation Indicator

COOJA COntiki Os JAva simulator

DBMS DataBase Management System

DCO Digitally Controlled Oscillator

DE Data Entity

DSN Deployment Support Network

ED Energy detection

EEPROM Electrically Erasable and Programmable ROM

ESB Embedded Sensor Board

FFD Full-Function devices

GPS Global Positioning System

xxii

LIST OF FIGURES xxiii

IEEE Institute of Electrical and Electronics Engineers

KTH Kungliga Tekniska Högskolan

ICMP Internet Control Message Protocol

I/O Input/Ouput

IP Internet Protocol

IPv6 Internet Protocol version 6

LED Light Emitting Diode

LLC Logical Link Control

LoS Line of Sight

LQI Link Quality Indicator

MAC Medium Access Control

MCPS MAC Common Part Sublayer

MiLAN Middleware Linking Applications and Networks

MLME MAC Layer Management Entity

MPDU MAC protocol data units

MSB Modular Sensor Board

NES Network Embedded System

NWK Network

NLDE NWK Layer Data Entity

NLME NWK Layer Management Entity

OEM Original Equipment Manufacturer

OSI Open Systems Interconnection

OUI Organizationally Unique Identifier

PAN Personal Area Network

PD Physical Data

PHY Physical Layer

PLME Physical Layer Management Entity

PLR Packet Loss Rate

PPDU Physical Protocol Data Unit

PRR Packet Reception Rate

QoS Quality of Service

LIST OF FIGURES xxiv

RAM Random Access Memory

RDOA Time Difference Of Arrival

RDT Route Discovery Table

RFD Reduced-Function

RFID Radio Frequency IDentification

ROM Read Only Memory

RSS Radio Signal Strength

RSSI Received Signal Strength Indicator

RT Routing Table

SAAB Svenska Aeroplan AktieBolaget

SAP Service Access Point

SCAR Sensor Contextaware Adaptive Routing

SICS Swedish Institute of Computer Science

SMP Sensor Management Protocol

SNMS Sensor Network Management System

SQDDP Sensor Query and Data Dissemination Protocol

SQTL Sensor Query and Tasking Language

SSCS Service Specific Convergence Sub layer

SSP Security Service Provider

TADAP Task assignment and Data Advertisement Protocol

TCP Transmission Control Protocol

uIP Micro IP

USB Universal Serial Bus

WSN Wireless sensor network

ZC ZigBee Coordinator

ZED ZigBee End Device

ZDO Zigbee Device Object

ZR ZigBee Router

Chapter 1

Introduction

Wireless Sensor Networks (WSNs) development, pervasiveness and research increased

tremendously in the last decade. WSN are daily used in many different fields, such as

precision agriculture, environmental and health monitoring, home automation, military

applications, object tracking, intrusion detection and surveillance systems. Such net-

works are based on embedded devices equipped with sensors and radio transceivers,

which communicate and collaborate to achieve a common goal.

These embedded devices have many characteristics and constraints: they are low-

power, memory-constrained, low-cost and low-size devices. The strength of wireless

sensor networks lies in the ability to deploy large numbers of tiny nodes that assemble

and autoconfigure themselves, in their flexibility and universality. A dense distribution

of micro-nodes enables a better area coverage than a single traditional macro-sensor,

and often provides an improved accuracy and a greater fault tolerance. Those prop-

erties, combined with the low cost and size of these devices and the minimal need of

human interaction, led to a great success of embedded systems. However, there are

many known drawbacks and constraints like limited resources, error-prone wireless

medium, environmental conditions variability, and low security and privacy.

Ilyad and Mahmoud [13] state that there are still many open challenges to satisfy the

various WSN application requirements. There is no protocol nor standard that satisfies

all applications that, in fact, have to be designed specifically. However, all the WSN

applications share the same needs and require more or less the same features: all appli-

cations have to adapt to the dynamic and varying environmental conditions and should

1

CHAPTER 1. INTRODUCTION 2

help in the self-configuration of the deployed sensor nodes.

In a survey on the problems of WSN presented by Kay Römer [14], the lack of in-

stallation ease, the concern about the interference, robustness, and reliability were the

biggest problems reported by people who developed and deployed sensor networks.

Additional problems reported by researchers were the significant manpower involved

in the deployment and the dependance on the individual skills of deployers.

In their survey of sensor networks, Akyildiz et al. [15] explain how potential applica-

tion layer protocols for sensor networks remain a largely unexplored region. This is

because the focus of the research community is towards the lower layers of the OSI

stack rather than towards the higher layers.

Furthermore, from a general and especially industry perspective, the major barrier to

the wide adoption of wireless sensor networks technologies is the lack of easiness in

WSN programming. This is also due to the fact that there is no existing standard for

WSN application support nowadays.

The need of a support for the wide range of sensor networks applications is thus in-

creasingly arising. The goal of an application support layer is to abstract the hardware

and to provide the most common features to the overlying applications, in order to

simplify and speed-up the work of developers. For surveillance systems, it is also a

very important issue to increase the robustness of the applications, especially due to

the dynamicity of the environment. For example, autoconfiguration schemes should be

provided in order to deal with varying environmental conditions.

The need of an always faster deployment is also very radicated in surveillance and

defence systems, as well as in emergency scenarios. The lenghty and tedious deploy-

ment phases should be shortened and the number of external assistant devices and tools

should be reduced.

The introduction of an application support leads first of all to an easier creation of man-

agement schemes and a better use of low-layer functionalities. It also improves device

robustness and reduces the overall complexity of applications. Moreover, time, costs,

and manpower involved in the deployment would be drastically reduced with the intro-

duction of a deployment support for sensor networks.

This Master Thesis digs inside the benefits and services that an application support

sub-layer would provide to the overlying applications. It shows how the design, de-

velopment, and performance of an application can be improved through the creation of

CHAPTER 1. INTRODUCTION 3

such sub-layer, proposing a possible implementation. The motivation for the work, as

well as the challenges and problems encountered in the design, are fully detailed in the

rest of the Thesis, including the evaluation of the implemented parts.

1.1 Problem statement

Wireless sensor networks development and pervasiveness gave origin to a wide range of

different applications with different features and needs, but that share the same design

constraints and limitations. Although different, all WSN applications need to easily

access sensor data, to deal with the radio channel interference, to monitor the battery

lifetime, as well as to provide easy auto-configuration schemes.

On the other hand, research today mainly focuses on development, optimization and

improvement of physical, MAC and routing layer issues, parameters adjustment, in

order to minimize the energy consumption [16] and maximize the lifetime [17], ro-

bustness [18], scalability and security of the systems [19] rather than on implementing

or designing an application support [15].

Heinzelman et al. [20] also remark that the design of new network-level protocols is

made today without considering the real needs of applications, and that application de-

signers would really benefit from a middleware that provides high-level interfaces for

sensor networks management.

Applications that make use of the wireless sensor networks stack are thus often left

alone and no specific support is provided from the lower layers for common basic fea-

tures. This happens despite applications share more or less the same needs and require

the same features, like self-configuration given the massive number of randomly de-

ployed sensor nodes or adaptability to the dynamic and varying wireless medium or

environmental conditions.

Deployment is one of the most delicate and non trivial phases in the lifecycle of wire-

less sensor networks. The limited resources of the nodes, the distributed nature of the

algorithms, the interaction with the environment and the large number of nodes in-

volved leads to difficult on-time access to the data and thus deployment is very hard. A

wrong deployment may have permanent deleterious effects on the network, and vanify

all the prior work made in the application development. Existing techniques for net-

work debugging increase the costs and the manpower involved, and validation process

CHAPTER 1. INTRODUCTION 4

requires lots of time.

A deployment support should guide the user in the deployment phase, verify the func-

tionality of the system, and lower the risk of early failures in a quick fashion and with-

out adding any cost. Basic device autoconfiguration like best-channel selection should

be quick as well, and a suitable reliable metric for rapid channel quality assessment

should be found.

These results indicates the incresingly need for a support sublayer, and this Master The-

sis studies the benefits that the introduction of an application and deployment support

sub-layer would provide, detailing why it is needed, the challenges in its design, a pos-

sible implementation, and the advantages it would bring to the application development

and the robustness of the whole system.

1.2 Method

The Master Thesis follows four consecutive steps. At first WSN application design

common problems and challenges are highlighted, and the most desired and needed

features by the applications are extracted. Moreover, existing work on application layer

design in wireless sensor networks is studied and analyzed.

Secondly, the operating system and wireless sensor network platforms used are care-

fully studied in order to have a complete view of the environment: respectively the

Contiki operating system [21] and the Tmote Sky [22] and MSB-430 platforms [23].

This focus, needed to provide an implementation example, is not affecting the design

principles, which are generic and can be also applied to other platforms or operating

systems.

Exploiting the knowledge acquired in the previous steps, a modular support sub-layer

is designed and some of its modules implemented and tested in the environments men-

tioned above.

Finally, the modules are evaluated following the approach of experimental computer

science.

CHAPTER 1. INTRODUCTION 5

1.3 Limitations

The work has been carried out mainly using the Sentilla Tmote Sky platform [22],

a wireless sensor board developed at University of California, and running on top of

Contiki, the Operating system developed at SICS for memory-constrained devices [21].

Some experiments have been also performed using the Modular Sensor Board (MSB-

430) [23], which is a robust wireless sensor network module designed for research and

education by ScatterWeb GmbH.

In the future, the application support sublayer designed in this Thesis will also be eval-

uated and tested under different conditions and extended to other platforms, such as

the Atmel AVR Raven [24], the Crossbow MICAz [25], and the Embedded Sensor

Board (ESB) [26], prototype device originally developed at the Freie Universität Berlin.

Moreover, new features and modules will be implemented to enrich the design of the

sub-layer and give the overlying application the most complete support.

1.4 Scientific contributions

The scientific contributions of this Thesis are threefolded. Firstly, it is shown how

an application support sublayer can improve the application development and perfor-

mance, as well its robustness.

Secondly, a new approach for speeding up the wireless sensor networks deployment has

been designed, in order to meet both the need of practical solutions towards quickly de-

ployable sensor networks and the rising demand of low-cost solutions for the wireless

sensor networks deployment. Negative effects of temperature and weather conditions

on outdoor deployments have been quantified through outdoor expeditions and kept

into account in the design of the deployment support.

Finally, a new mechanism for fast channel quality assessment based on the variance

of the Link Quality Indicator (LQI) hardware indicator is proposed. A preliminary

evaluation shows that it can reliably identify good links using less packets than existing

approaches.

CHAPTER 1. INTRODUCTION 6

1.5 Outline

This Master Thesis is structured as follows. Chapter 2 illustrates the background of

the Thesis, with a brief description of wireless sensor networks and their main stan-

dards, a detailed description of the Contiki Operating system and its features, and the

description of the platforms used for the experiments and the implementation.

The common challenges and problems in the wireless sensor networks application de-

sign are covered in Chapter 3. This chapter relates the application design challenges

to the features that the sub-layer will implement. Finally, the current philosophies in

wireless sensor networks application layer design are described.

Chapter 4 explains and provides an exhaustive description of the design and the im-

plementation of an application and deployment support sub-layer. Problems and chal-

lenges encountered in the design and design choices for each single module of the

sub-layer are detailed.

The evaluation of each single module of the designed support sub-layer is illustrated in

Chapter 5 and related work is detailed in Chapter 6.

This Master Thesis is concluded with Chapter 7, along with a discussion of the results

and suggestions for future work.

For the sake of completeness, a publication based on this Master Thesis work that

has been accepted in a well-known conference in the wireless sensor network area is

appended.

Chapter 2

Background

This chapter introduces the fields related to the Master Thesis content. In Section

2.1 Wireless Sensor Networks (WSN) are introduced and in Section 2.2 the two main

standard technologies for WSN, which are IEEE 802.15.4 and Zigbee, are briefly de-

scribed.

Section 2.3 contains a detailed description of the Contiki Operating System, one of

the most popular operating systems among users and developers of Wireless Sensor

Systems, its features and how it is adapted to memory-constrained embedded sensor

nodes. Since this project work has been entirely implemented using Contiki, a clear

overview of it is indispensable in order to know the features and services provided, and

how to properly exploit them.

Sections 2.4 and 2.5 describe respectively the Sentilla Tmote Sky platform and the

ScatterWeb MSB-430 platform that have been widely used during the implementation

of this Thesis.

The properties of both Contiki and the platforms described in this chapter are recalled

in Chapter 4 where the design and the implementation of the application support sub-

layer are detailed.

7

CHAPTER 2. BACKGROUND 8

2.1 Wireless Sensor Networks

In a time where focus in the computing industry is on computational power, the em-

bedded revolution took place, and highly-optimized special-purpose devices got the

biggest part of the market. Although it is impossible to have a precise estimation of

the total number of embedded systems in the world today, it is not unreasonable that

around 98% of all microprocessors sold are used in embedded systems as mentioned

by Dunkels [27]. According to Ravi Krishnan [28], the world market for embedded

software and hardware will grow to 82,2 billion dollars by 2009, with an average an-

nual growth rate of around 14-16%. Nowadays embedded systems can in fact be found

in a wide spectrum of areas ranging from digital watches to traffic-control systems and

planes.

Metrics for Wireless Sensor Networks can be both technical and economical. Energy

efficiency, size, flexibility and reusability are the main technical requirements, whereas

unit cost and time-to-market are the economical metrics used to determine whether the

system will be successful.

A special kind of embedded systems are Wireless Sensor Networks, which consist of

many small wireless networked embedded systems equipped with radio and sensors

that cooperatively monitor physical or environmental conditions and send their data to

other nodes or towards the base station. WSN were originally motivated by military

application such as battlefield surveillance, and are used today in many civil application

areas like home automation, environment and habitat monitoring, healthcare applica-

tions, and surveillance systems.

Wireless Sensor Networks design is influenced by several factors: for example depend-

ing on the application of sensor networks, it may be indispensable that sensor network

functionalities are not interrupted. For this purpose fault tolerance is an extremely

important property, that can be achieved through redundancy. As long as the sensor

network grows, scalability problems may arise. Simulations are a very useful tool to

predict how efficient is the topology design when deployed in a large scenario with

many nodes. The cost of a single node is also very important to justify the overall cost

of the network: a sensor node should be very cheap because many nodes are usually

deployed to ensure a better coverage and a greater fault tolerance. Among all other

possible factors, it must be remarked that the ones that really drive WSN design are

CHAPTER 2. BACKGROUND 9

power consumption and energy efficiency. Those two properties are related to each

other and are driving today’s research focus and development.

Wireless Sensor Networks are often associated to Personal Area Networks (PANs),

networks for interconnecting devices centered on an individual person’s workspace,

typically in a short range. They can be be both wired or wireless, and in this last case

they are called WPANs. Wireless Sensor Networks, due to their special characteristics,

are actually belonging to the Low-Rate WPANs, for which IEEE 802.15.4 and Zigbee

standards are two of the main standards. The next section will provide an exhaustive

description of these two protocols.

Figure 2.1: IEEE 802 Main standards

CHAPTER 2. BACKGROUND 10

2.2 802.15.4 and Zigbee standards

IEEE 802.15.4 [1] is the IEEE standard for low data rate wireless PANs, which focuses

on the specifications of the two lower layers of the protocol: the physical and data link

layers. It does not provide the upper layers of the protocol stack.

Zigbee technology [2] is a low data rate, low power consumption and low cost wire-

less networking protocol targeted towards automation and remote control applications.

IEEE joined forces with Zigbee Alliance and worked closely to specify the entire pro-

tocol stack: IEEE 802.15.4 focuses on the lower two layers of the OSI protocol stack,

whereas Zigbee Alliance aims to provide the upper layers for interoperable data net-

working, security services and an extremely wide range of wireless home and building

control solutions. The goal is to provide as well interoperability, compliance testing,

marketing of the standard and advanced engineering solutions for the evolution of the

standard.

2.2.1 IEEE 802.15.4

IEEE 802.15.4 [1] is a standard that specifies the physical layer and medium access

control for low-rate wireless personal area networks. IEEE 802.15.4 standard intends

to offer the fundamental lower network layers and focuses on low-cost, low-speed ubiq-

uitous communication between devices.

Physical Layer

The physical layer (PHY) defines the physical and electrical characteristics of the net-

work, for example specifying the receiver sensitivity and transmitting output power (in

order to conform to national regulations).

The basic task of this layer is thus data transmission and reception at the physical/electrical

level, which involves modulation and spreading techniques that map bits of informa-

tion in such a way they can travel through the air. The PHY tasks can be summarized

as follows, as remarked by Boano and Hossen [29]:

• enable/disable the radio transceiver (since low duty cycle saves energy);

• compute Link Quality Indication (LQI) for received packets;

CHAPTER 2. BACKGROUND 11

• Energy Detection (ED) within the current channel by means of signal strengths

estimation;

• listen to channels and declare availability or not (also called CCA - Clear Chan-

nel Assessment). There are three modes: Energy above threshold, Carrier sense

only, Carrier sense with energy above threshold.

The physical layer services can be accessed through the Physical Data Service Ac-

cess Point (PD-SAP) and the Physical Layer Management Entity Service Access Point

PLME-SAP. PD-SAP provides data services (primitives PD-DATA request, PC-DATA

confirm and PC-DATA indication), whereas PLME-SAP provides the PAN Information

Base Management Primitives (PLME-GET and PLME-SET to request and confirm,

PLME-SET-TRX-STATE to enable and disable the physical interface, PLME-CCA for

Clear Channel Assessment, and PLME-ED for energy detection).

Figure 2.2 shows the Physical Protocol Data Unit (PPDU) frame, which is composed of

a synchronization header consisting of a 4 byte preamble of binary zeros (for chip and

symbol synchronization) and 1 octet for start-of-packet delimiter (SFD) that signifies

end of preamble (0xE6 = ’11100101’); 1 byte header (7 bits for the frame length plus

1 bit reserved for future use), and the payload (that must be less than 127 bytes). The

PPDU can contain either data or data acknowledgment and its packet size varies from

5 to 127 bytes.

The physical layer also specifies the raw data rate characteristics, which can either be

selected to offer a larger coverage area or higher throughput. No license is required

when the 868 MHz is used in Europe or the 915 MHz band for Americas, whereas 2.4

GHz is available worldwide.

Figure 2.2: IEEE 802.15.4 PPDU format. Adapted from the 802.15.4 standard [1].

CHAPTER 2. BACKGROUND 12

MAC Layer

Features. The IEEE 802.15.4 MAC Standard provides information about type and

association of devices, channel access mechanism, packet delivery, frame structure,

guaranteed packet delivery, possible network topologies and security issues. In order to

communicate with the upper layers it provides the MAC data service (MAC Common

Part Sub layer, or MCPS-SAP) and the MAC management service (MLME-SAP). The

MAC data service enables transmission of MAC protocol data units (MPDU) across

the Physical Layer data service. The MAC sub layers features include beacon man-

agement, channel access, GTS management, frame validation, acknowledged frame

delivery, association and disassociation. The MAC also provides support for imple-

menting defined security mechanisms like AES-128, ACL modes, Data Encryption,

Frame Integrity and Sequential Freshness.

As shown in Figure 2.3, the Logical Link Control sub-layer sits on top of the MAC

layer, providing multiplexing of protocols transmitted over the MAC layer, optional

flow control, and detection and retransmission of dropped packets. However, the IEEE

802.15.4 standard has modified and redefined Layer 2 to either allow an IEEE 802.2

LLC to access the 802.15.4 MAC Sub layer through a Service Specific Convergence

Sub layer (SSCS) as defined in Annex A of the IEEE 802.15.4 Standard or to allow di-

rect access to the MAC by the upper layers, used by proprietary networks and ZigBee

networks.

The Service Specific Convergence Sub layer (SSCS), as illustrated in Figure 2.3, exists

conceptually above the MAC Common Part Sub layer (MCPS). According to the IEEE

[30], the SSCS, using services of the MCPS, supports these functions:

• receiving PDUs from upper protocol layers;

• classifying received PDUs and processing them if required;

• delivering each SSCS PDU to the MAC CPS-SAP;

• receiving SSCS PDUs from a peer SSCS entity.

The primitives of MAC Data Service Layer concern: availability of data from SSCS

to SPDU, their transport and confirmation (MCPS-DATA Request, MCPS-DATA Con-

firm, MCPS-DATA Indication), and general communications between MAC layer and

CHAPTER 2. BACKGROUND 13

Figure 2.3: Comparison of the IEEE 802.15.4 and Zigbee standards OSI layers.

upper layers (MCPS-PURGE Request, MCPS-PURGE Confirm). The primitives that

MAC Management Service offers are related to the availability of managing:

• initialization (MLME-RESET), association (MLME-ASSOCIATE) or withdrawal

(MLME-DISASSOCIATE) of a device to the network and the presence of an or-

phan device (MLME-ORPHAN);

• beacons (MLME-BEACON and MLME-START);

• the PAN information base (MLME-GET, MLME-SET);

• the allocation or disallocation of a Guaranteed Time Slot (MLME-GTS);

• the status of communication (MLME-RX-ENABLE to ask the receiver enable,

MLME-SCAN to scan a list of channels, MLME-COMM-STATUS to indicate

the communication status and signal a packet containing an error);

• dialogs with communicator and allow synchronization (MLME-SYNC to allow

device and coordinator synchronization, MLME-SYNC-LOSS to signal the loss

of synchronization with the coordinator, MLME-POLL to ask a data request to

the coordinator).

CHAPTER 2. BACKGROUND 14

Devices types and topologies. The IEEE 802.15.4 MAC standard defines two types of

nodes: Reduced-Function (RFD) or Full-Function devices (FFD). FFDs are equipped

with a full set of MAC layer functions, which allow them to act as both a network co-

ordinator or network end-device, whereas an RFD has no routing capabilities and may

communicate with only a single FFD. So, RFDs can act as end-devices, and they are

generally equipped with sensors and actuators. FFDs have instead routing capabilities

and can be configured as PAN coordinators, in which case they can offer synchro-

nization, communication, and network joining services. The choice of defining two

different types of devices with different characteristics is imposed by the power con-

sumptions needs of low-rate PAN devices, and in order to allow vendors to supply the

lowest possible cost devices.

IEEE 802.15.4 defines three types of modes: PAN coordinator, coordinator and end-

device. An FFD can be configured for any of these operating modes. In a star network

all nodes communicate with the PAN coordinator only, so it does not matter whether

they are FFDs or RFDs. In a peer-to-peer network (mesh or cluster tree) there is also

one PAN coordinator, but there are other FFDs which can communicate with not only

the PAN coordinator, but also with other FFDs and RFDs. From those specifications

three kinds of topologies can be defined: star, mesh, and cluster tree. It is important to

remark that the PAN coordinator is always unique in all three topologies, and for this

reason there can be only one PAN coordinator in every network.

MAC Frame Format. In addition to the beacon frame, IEEE 802.15.4 also defines

a data frame, an acknowledgment frame to confirm successful frame reception, and

a command frame used for handling all MAC peer entity control transfers. All four

frames are characterized by header, payload, and trailer, but with different formats for

each case. In particular, the ACK frame has no addressing fields and payload, so it

is only 5 bytes, and is the minimal size MAC frame. Figure 2.4 shows the possible

MAC frame formats and the 4 different kinds of payload: command, data, beacon, and

acknowledgment (in which case there is no payload).

Addressing. IEEE 802.15.4 supports both short (16 bits) and extended (64 bits) ad-

dressing. An extended address (also called EUI-64) is assigned to every RFD that

complies with the 802.15.4 specification.

CHAPTER 2. BACKGROUND 15

Figure 2.4: Available formats for the MAC frame.

2.2.2 The Zigbee standard

Although sometimes Zigbee is considered to be the same as IEEE 802.15.4, it is con-

ceptually completely different. The Zigbee protocol stack has been developed by the

Zigbee Alliance and it sits on top of the two layers defined by the IEEE 802.15.4 stan-

dard, which has been described in Subection 2.2.1.

This protocol stack defines two additional layers, the Zigbee Network Layer (NWK)

and the Zigbee Application Layer, which will be described in detail in this section. On

top of this stack there are the application profiles, which must be followed by devel-

opers. According to the IEEE 802.15.4 standard [1, 31], the purpose of a profile is to

create an interoperable, distributed application layer for separate devices. Profiles are

simply standard rules and regulations and can be divided in public (managed by the

Zigbee Alliance), private (defined by OEM (Original Equipment Manufacturer), and

published (if an OEM decides to publish its private profile).

A Zigbee stack provides all the functionality required by the Zigbee specification so

that manufacturers can focus on developing their product’s applications. If manufac-

turers use one of the public profiles, most of the configuration is already done. If none

of the public profiles fits the manufacturers’ needs, a new profile can be created, which

can take advantage of the job already done by other profiles.

CHAPTER 2. BACKGROUND 16

The Zigbee Network Layer (NWK)

The ZigBee Network (NWK) Layer is responsible for providing functionalities which

ensure correct operation of IEEE 802.15.4 MAC sub-layer and provide a suitable ser-

vice interface to the application layer. The NWK layer supports star, tree, and mesh

topologies. Its duties are the creation, join, and abandon of a new network, address

assignment for new devices, synchronization, and packet forwarding. The NWK layer

is logically divided into two service modules namely NWK Layer Data Entity (NLDE)

and NWK Layer Management Entity (NLME). The first one provides data transmission

service via its associated Service Access Point (NLDE-SAP); the second one provides

a management service via the NLME-SAP. Services provided by these modules estab-

lish an interface between the application and the MAC sub-layer, via the MCPS-SAP

and MLME-SAP interfaces, shown in Figure 2.3.

Device type and topologies. The ZigBee network layer defines three types of device

namely ZigBee End Device (ZED), ZigBee Router (ZR) and ZigBee Coordinator (ZC).

ZEDs correspond to FFDs or RFDs described in Subsection 2.2.1 when they act as

simple devices; ZR are FFDs with routing functionalities and the ZC are the most

powerful ones that manage the whole network. As the PAN coordinator, the ZC must

be unique in a network.

The nodes in a ZigBee network can be arranged using three different network topolo-

gies: star, tree, and mesh, as described in Subsection 2.2.1. The simplest of the three

topologies is the star topology, where the ZigBee network contains one coordinator, no

routers, and a number of end devices and in which each end device is within radio range

of the coordinator. In the tree topology, the communication routes are organized in such

a way that there exists exactly one route from one device to another; end devices may

either communicate directly with the coordinator or either with a router. Also in the

mesh topology, end devices communicate either directly with the coordinator or with

a router, but unlike the tree topology, there may be several routes between different

routers. This redundant routing is transparent to the end devices, and introduces some

reliability in the network at the cost of added complexity.

Network Layer Frame format. A NWK frame consists of a NWK header, which

comprises frame control, addressing and sequencing information and a NWK payload,

of variable length, which contains information specific to the frame type. Figure 2.5

illustrates the General frame format of NWK layer.

CHAPTER 2. BACKGROUND 17

Figure 2.5: General format for the NWK frame and frame control fields.

The frame control field is 16-bits long and contains information defining the frame

type, addressing and sequencing fields, and other control flags. The destination ad-

dress field is 2 octets long and depending on the multicast flag sub-field of the frame

control field it holds the 16-bits network address of the destination device, a broadcast

address, or a 16-bits Group ID of a destination multicast group. The source address

field always holds the 16-bit network address of the source device. Radius specifies

the range of a radius-limited transmission. The field shall be decremented by one by

each receiving device as with the hop-count field of IPv6 (or the TTL field in IPv4)

header. The sequence number along with the source address field uniquely identifies a

frame. The remaining fields in the NWK header are optional and are used when using

the IEEE 802.15.4-compliant 64-bits addresses. The frame payload field has a variable

length and contains information specific to individual frame types.

Network formation and joining. Zigbee coordinator is the only capable device of

initiating a new network formation. When a coordinator attempts to establish a ZigBee

network, it performs an energy scan to find the best RF channel for its new network.

Once a channel has been chosen, the coordinator assigns the PAN ID, which will be

applied to all devices that join the network. A node can join the network either directly

or through association. To join directly, the system designer adds a node’s extended

address into the neighbour table of a device. The direct joining device will issue an or-

phan scan, and the node with the matching extended address will respond, allowing the

CHAPTER 2. BACKGROUND 18

device to join. To join by association, a node sends out a beacon request on a channel,

repeating the beacon request on other channels until it finds an acceptable network to

join. The NLME is responsible for all of these functionalities.

Addressing scheme. The ZigBee protocol defines three addressing schemes: direct,

indirect, and broadcast. Direct addressing, also known as normal unicast, is used to

communicate from one device to another. Indirect addressing requires the sending

and the receiving devices to be bound through the coordinator. When two devices are

bounded, they do not need to know the address of the other device, as the coordinator

will orchestrate the delivery of messages. This allows one-to-many and many-to-one

relationships between participating end devices. Broadcast traffic is allowed in the

NWK layer by means of a special network broadcast address, namely 0xFFFF.

Address assignment. Before joining a ZigBee network, a device with an IEEE 802.15.4-

compliant radio has 64-bits address, which is a globally unique number made up of an

Organizationally Unique Identifier (OUI) plus 40-bits assigned by the manufacturer

of the radio module. OUIs are obtained from the IEEE to ensure global uniqueness.

When the device joins a Zigbee network, it receives a 16-bit address called the NWK

address. Both the 64-bit extended address and the NWK address can be used within the

PAN to communicate with a device. The coordinator of a ZigBee network has always

a NWK address of ”0”. ZigBee [2] uses the CSkip algorithm to assign network address

to particular nodes. The ZigBee coordinator (ZC) assigns single addresses to ZEDs,

whereas a range of addresses are assigned to ZigBee Routers (ZR).

Neighbor discovery and message routing. The NWK layer is responsible for neigh-

bour discovery and data transfer from one node to another. Every router node main-

tains a neighbour table to keep information about its neighbours and provide at the

same time routing functionalities. Zigbee supports two types of routing: tree-based

and mesh-based routing. Tree-based routing is the simplest, and supports routing only

along parent-child links. In a tree-based network, routers can determine if the destina-

tion belongs to a tree rooted at one of its router children or if it is one of its end-device

children. If a destination belongs to one of its children, it routes the packet to the appro-

priate child. If a destination does not belong to one of its children, it routes the packet

to its parent. In mesh-based topologies, routers maintain a routing table (RT) and em-

ploy a route discovery algorithm to construct or update these data structures on the path

CHAPTER 2. BACKGROUND 19

nodes. This is also known as table driven routing. When there is no entry for the given

destination in the RT, the network layer attempts to start the route discovery procedure.

If sufficient resources are not available, it falls back to tree-based routing. Route/Path

discovery is a process required to establish routing table entries in the nodes along the

path between two nodes wishing to communicate. A Route Discovery Table (RDT) is

maintained by routers and the coordinator to implement route discovery. Zigbee Route

discovery is based on the Ad-hoc On-demand Distance Vector (AODV) routing algo-

rithm. This routing algorithm uses a path cost metric during route discovery based on

LQI value provided by 802.15.4 MAC and PHY layers.

The Zigbee Application Layer (APL)

The Zigbee Application Layer (APL) consists of an Application Framework (AF), Zig-

bee Device Object (ZDO), and Application Support Sub layer (APS).

Application Support Sub-layer. The Application Support Sub layer provides the in-

terface between the NWK Layer and the Application layer. APS provides two types of

services to application objects and ZDOs: data transmission service and management

service. APS provides several data transmission services such as routing messages

between different application end points, binding tables, routing messages between

different bounded devices, generation of application level PDUs (APDU), fragmenta-

tion and reassembly of messages. The data transmission service in APS is performed

by APS data entity (APSDE). ZDO and all other application objects use this service

through APSDE-SAP. Like APSDE there is an entity responsible for data management

service, and it is called APSME-SAP. APSME-SAP provides data management ser-

vices to application objects. It is responsible for matching two devices based on their

services, providing an authenticated relationship between them, as well as providing

group address definition and management. The general frame format for APS has vari-

able length, and it is shown in Figure 2.6.

Application Framework. The Application Framework provides an environment in

which all applications execute. These applications can be executed in any Zigbee de-

vices which are connected to the application framework. This Application Framework

allows Zigbee devices to communicate with the APS. Application objects are defined

by the manufacturer of ZigBee-enabled devices. An application object implements the

application (light bulb, light switch, LED, I/O line are some examples), and it is ad-

CHAPTER 2. BACKGROUND 20

Figure 2.6: APS frame format. Adapted from the Zigbee specifications [2].

dressed through its corresponding endpoint. Endpoint numbers range from 1 to 240:

endpoint 0 is the address of the ZigBee Device Object (ZDO), endpoint 255 is the

broadcast address (messages will thus be sent to all endpoints on a particular node).

Application profiles are run by application objects. Application framework allows the

use of ZDO Functions via the Public Interface.

Zigbee Device Object. The ZigBee device object (ZDO) provides an interface between

the application objects, the application profile, and the APS. The major activities of

ZDO combining mandatory and optional parts are:

• the initialization of the APS sub layer and the NWK layer;

• the definition of the device role (i.e., coordinator, router, or end device);

• device discovery and determination;

• service discovery and determination;

• the initialization or response to binding requests;

• the establishment of a secure relationship between network devices.

Device discovery is the process whereby a ZigBee device can discover other ZigBee

devices, and it is defined at the application layer in Zigbee specifications. There are two

CHAPTER 2. BACKGROUND 21

forms of device discovery requests: IEEE address requests and NWK address requests.

Device discovery is only initiated by the coordinator or a router. In response to a device

discovery inquiry end devices send their own IEEE or NWK address (depending on the

request). A coordinator or router will send their own IEEE or NWK address plus all

of the NWK addresses of the devices associated with it. Device discovery allows an

ad-hoc network as well as a self healing network.

Service discovery is a process of finding out what application services are available at

each node, and this information is used in binding tables to associate a device offering

a service with a device that needs that service.

Besides the NWK layer and Application layer ZigBee protocol stack also contains a

module named Security Service Provider (SSP), which offers security mechanisms to

NWK layer and APS sub layer. The overall security of the system is defined at the

profile level of each layer: MAC, network, and application layers can be secured and

share security keys to reduce the required storage. The Zigbee specification defines the

use of a ”trust centre” as a device within the network that distributes the security keys

and SSP is configured by the ZDO.

CHAPTER 2. BACKGROUND 22

2.3 The Contiki Operating System

Sensor nodes are generally constrained in memory and computational capacity. The

small physical size and the low cost intended for the devices impose a limit that must

be taken into account when designing an application. Typical platforms are equipped

with a code memory of dozen kB: for example the Tmote Sky platform is equipped with

10 kB and MSB-430 platform with 5 kB. These limitations motivate the development

of specifically oriented operating systems for this kind of hardware as remarked by

Suárez [16].

Widespread and well-known operating system, which have been designed for these

constrained devices, are TinyOS [32], SensorWave [33] and Contiki [21]. Contiki has

been developed by Adam Dunkels and the members of the Networked Embedded Sys-

tems Group at the Swedish Institute of Computer Science (SICS), and its charachteris-

tics made Contiki an appropriate choice as Wireless Sensor Networks operating system.

Contiki is a open source lightweight multitasking operating system for memory con-

strained devices ranging from 8-bit computers to embedded systems on microcon-

trollers including sensor networks motes. Contiki provides dynamic loading and un-

loading of individual programs. The kernel is event-driven, but the system supports

as a library also preemptive multi-threading, which can be applied on a per-process

basis. Contiki uses protothreads, a novel programming technique that provides a linear

thread-like programming style on top of the event-driven kernel.

Contiki includes two complete communication stacks, respectively Rime and uIP. The

first one is a lightweight stack that provides a wide range of communication options;

the second one is a RFC-compliant TCP/IP stack that enables Internet connectivity in

sensor nodes. The typical configuration of Contiki is 2 Kb of RAM and 40 Kb of ROM.

A full installation of Contiki provides several components: in addition to the TCP/IP

networking, a windowing system, a web browser, a web server, a networked remote

display, and a telnet client are also included.

Currently at version 2.2.2, Contiki is implemented in the C language and it has been

successfully ported in a huge amount of systems, including microcontroller architec-

tures (like the Texas Instruments MSP430 [5], the Atmel AVR Raven [24] and the ESB

platform [26]), video and handheld game consoles (like Nintendo Game Boy, Sega

CHAPTER 2. BACKGROUND 23

Dreamcast and Sony PlayStation) and computers.

2.3.1 Event-driven versus multi-threaded programming

Event-driven and multi-threaded programming are two different models of operation.

A multithreaded model is suitable for long running computations, but it often consumes

large parts of the memory resources. Each thread in fact must have its own stack and

since it is hard to know in advance how much stack space a thread needs, the stack

typically has to be over-provisioned. The memory for each stack must be allocated

when the thread is created and cannot be shared between many concurrent threads,

but can only be used by the thread to which is was allocated. Due to the nature of

threads, in order to avoid concurrency, locking mechanisms are required to prevent

concurrent threads from modifying shared resources and code must be reentrant. For

these reasons, some researchers consider the multi-threaded model as not suitable for

memory constrained environments, as mentioned by Dunkels et al. [21].

Figure 2.7: Event-driven versus Multithreaded flow.

In event-driven systems, processes are implemented as event handlers that run to com-

pletion. Processes do not run without events and as soon as an event occurs the kernel

invokes the corresponding event handler, which runs to completion until explicit return.

Because an event handler cannot block, all processes can use the same stack, effectively

sharing the scarce memory resources between all processes. They are compact, they re-

quire low context switching overhead, and do not need locking mechanisms in general,

CHAPTER 2. BACKGROUND 24

since two event handlers never run concurrently with respect to each other.

Event handlers obviously fit well for reactive systems, while they are definitely not

suitable for long running computations like public or private key cryptography, since

lengthy computation completely monopolizes the CPU, making the system unable to

respond to external events.

However, also event-driven systems have cons. The state driven programming model

can be hard to manage for programmers, especially in case of recursive callbacks;

moreover not all programs are easily expressible as state machines. Table 2.1 summa-

rizes the differences between event-driven and multithreaded programming approaches.

Table 2.1: Comparison between Event-driven and Multithreaded approaches.

To combine the benefits of both event-driven systems and preemptible threads, Contiki

uses a hybrid model: the system is based on an event-driven kernel where preemptive

multi-threading is implemented as an application library that is optionally linked with

programs that explicitly require it [21].

2.3.2 The Contiki Kernel

The Contiki kernel consists of an event scheduler that dispatches events to running pro-

cesses and periodically calls processes’ polling handlers [21]. All program execution

is triggered either by events dispatched by the kernel, by the polling mechanism, or

directly by the program calling process post synch(). The kernel does not preempt an

event handler once it has been scheduled, thus event handlers must run to completion.

However, event handlers may also use internal mechanisms to achieve preemption: pre-

emptive multi-threading is implemented as a library optionally linked with applications

that explicitly require a multi-threaded model of operation. The library is divided into

two parts: a platform independent part that interfaces to the event kernel and a platform

specific part implementing the stack switching and preemption primitives. The library

also provides the necessary stack management functions, since each thread requires a

separate stack.

CHAPTER 2. BACKGROUND 25

Both asynchronous and synchronous events are supported by the Contiki kernel. The

first ones are a sort of deferred procedure call, and thus asynchronous events are first

enqueued and then dispatched to the target process some time later. With synchronous

events instead, the target process will be immediately scheduled. A big advantage of

the usage of asynchronous events is the reduction of the stack space requirements, as

the stack is rewound between each invocation of event handlers. Control returns to

the posting process only after the target has finished processing the event, because the

event scheduling is performed at single level and thus events cannot preempt each other.

However, events can be preempted by interrupts, which can be both hardware and soft-

ware based. The interrupt introduction can lead to race-conditions in the event handler,

because Contiki never disables interrupts. For this reason, events are not allowed to be

posted by interrupt handlers, but a polling flag can be used to request a poll event and

request immediate polling.

The Contiki kernel also provides a polling mechanism. When a poll is scheduled all

processes that implement a poll handler are called, in order of their priority. Con-

cerning power conservation mechanisms, the Contiki kernel contains no explicit power

save abstractions, but lets the application specific parts of the system implement such

mechanisms. To help the application decide when to power down the system, the event

scheduler exposes the size of the event queue. This information can be used to power

down the processor when there are no events scheduled.

2.3.3 Static versus dynamic loading

Programmers which are developing software for sensor networks, need to reprogram

the nodes quite often. When many nodes must be reprogrammed at the same time, they

can be loaded at once, for example exploiting the nature inherently broadcast of radio.

This would be much faster than downloading the firmware via cable or programming

adapter and, in this way, deployed networks can also be easily reprogrammed. The

reprogramming operation often involves just one or few modules, and since also pro-

grams and services typically are a small percentage of the entire system image, it would

be a great improvement for Wireless Sensor Networks a dynamic load of modules sys-

tem, since smaller files upload leads to less energy and less dissemination time.

In Contiki both this characteristics are satisfied: programs and services can be loaded

CHAPTER 2. BACKGROUND 26

from anywhere (radio, EEPROM, etc) and can be loaded run-time, using a dynamic

loading of modules approach. As well as SOS [34] and unlike TinyOS [32], Contiki

has loadable modules support [35]. A loadable module contains the native machine

code of the program that is to be loaded into the system and such machine code in the

module usually contains references to functions or variables in the system. These refer-

ences must be resolved to the physical address of the functions or variables before the

machine code can be executed and this process of resolving those references is called

linking. Linking can be done either when the module is compiled (pre-linking) or

when the module is loaded (dynamic linking). A pre-linked module contains the abso-

lute physical addresses of the referenced functions or variables whereas a dynamically

linked module contains the symbolic names of all system core functions or variables

that are referenced in the module.

2.3.4 Libraries

Only the most basic CPU multiplexing and event handling features are provided by

Contiki. The rest of the system is implemented as system libraries that are optionally

linked with programs. Programs can be statically linked with libraries that are part of

the core or part of the loadable program or programs can call services implementing a

specific library. Libraries that are implemented as services can be dynamically replaced

at runtime.

2.3.5 Protothreads

Contiki implements its processes using a lightweight stackless thread-like construct

called protothreads. Protothreads are ideated by Dunkels [36, 37], and have as goal the

implementation of a simple sequential flow of control that avoids state machines. As

explained also in Section 2.3.1, it is difficult to program regular event-driven system

since it is difficult to write the complete state machine and since it is hard to define the

exact point in which to resume the execution after the blocking call. However, event-

driven systems are memory-efficient, differently from threads, which require portion

of stack to be allocated in advance and over-provisioned.

Protothreads combines the advantages of both event-driven systems and multithreaded

systems. Protothread inherited the blocking wait semantic from threads and the low

memory overhead as well as the stacklessness from events. Thus, an advantage of pro-

CHAPTER 2. BACKGROUND 27

tothreads over traditional threads is that they are very lightweight, since all protothreads

run on the same stack and context switching is done by stack rewinding.

A protothread runs within a single C function and cannot span over other functions.

A protothread may call normal C functions, but cannot block inside a called func-

tion. Blocking inside nested function calls is instead made by spawning a separate

protothread for each potentially blocking function. The advantage of this approach

is that blocking is explicit: the programmer knows exactly which functions that may

block that which functions that are not able block.

The linear sequencing of statements in event-driven programs is allowed by the block-

ing and wait semantics. The PT WAIT UNTIL() is the conditional blocking wait state-

ment that takes a conditional statement and blocks the protothread until the statement

evaluates to true. The condition can be any conditional statement, including complex

Boolean expressions. PT YIELD() is the unconditional blocking wait, which temporar-

ily blocks the protothread until the next time the protothread is invoked. Structure of

the protothread is easily understandable because the beginning and the end of a pro-

tothread are declared with PT BEGIN and PT END statements: everything outside of

those statements is not part of the protothread. A protothread can exit prematurely with

a PT EXIT statement. Protothreads may also need to be decomposed in a hierarchical

fashion and this is done through the PT SPAWN() operation, which initializes a pro-

tothread child and blocks the current protothread until the child has either ended with

PT END or exited with PT EXIT. The child protothread is scheduled by the parent;

each time the parent protothread is invoked by the underlying system, the child pro-

tothread is invoked through the PT SPAWN() statement. The memory for the state of

the child protothread typically is allocated in a local variable of the parent protothread.

2.3.6 Communication support

Contiki includes two complete communication stacks: Rime [38] and uIP [39]. The

first one is a lightweight stack that provides a wide range of communication options and

sits on top of the Chameleon [3] adaptive communication architecture for sensor net-

works; the second one is a RFC-compliant TCP/IP stack that enables Internet connec-

tivity in sensor nodes. This section describes in detail respectively Rime, Chameleon,

and uIP.

CHAPTER 2. BACKGROUND 28

Rime

Rime [38, 3] is a lightweight layered communication stack for sensor networks, with

much thinner layers than traditional architectures. It has been designed in order to sim-

plify the implementation complexity of communication protocols and it does so with

only a small increase in resource requirements, proving that a layered stack is a suit-

able communication abstraction even for sensor networks. Since it is organized in thin

layers, Rime enables code reuse within the stack.

The layer architecture is shown in Figure 2.8. The layers are designed to be extremely

simple, both in terms of interface and implementation. Each layer adds its own very

small header (few bytes each) to outgoing messages. The Rime stack supports both

single-hop and multi-hop communication primitives. The multi-hop primitives do not

specify how packets are routed through the network. Instead, as the packet is sent

across the network, the application or upper layer protocol is invoked at every node to

choose the next-hop neighbor. This makes it possible to implement arbitrary routing

protocols on top of the multi-hop primitives.

Figure 2.8: The Rime stack architecture.

CHAPTER 2. BACKGROUND 29

The lowest layer in the Rime stack is the so called anonymous best-effort local area

broadcast (abc). It is the most basic communication primitive in Rime, since it pro-

vides a way for upper layers to send a data to all the local neighbors that listen to the

channel on which the packet is sent. A channel is an abstraction that allows two or

more end-nodes to communicate and it is equivalent to the TCP/IP port number. The

abc layer does not contain any kind of information about destination or sender: the

sender identity is added by the identified best-effort local area broadcast (broadcast),

which adds a sender identity header field. To identify a single-hop neighbor, the Single-

hop Unicast (unicast) primitive, which adds the single-hop receiver address attribute to

the outgoing packets, is used. This module also discards packets whose address does

not match with the address of the node.

The Rime thin layer separation is also applied in reliable communications, which is

divided into more layers, one that implements acknowledgments and sequencing, and

one that resends messages until the upper layer tells it to stop. This last one is the

so called Stubborn layer, and it repeatedly sends and resends a packet to a single-hop

neighbor until an upper layer primitive or protocol cancels the transmission. It is im-

plemented by setting a timer before allocating a queue buffer (for application data and

packet attributes like number of retransmissions) and sending the packet. There are two

different stubborn layers in Rime: Stubborn unicast (stunicast) and Stubborn best-effort

local area broadcast (stbroadcast), respectively for unicast and broadcast communica-

tions. On top of the stubborn layers can sit the reliable layers, which are consequently

different for unicast and broadcast.

Single-hop reliable unicast (runicast) reliably sends a packet to a single-hop neighbor

using acknowledgements and retransmissions. It does so by adding two packet at-

tributes: the single-hop packet type and the single-hop packet ID and it uses the second

one as a sequence number for matching acknowledgement packets to the corresponding

data packets. It communicates with the application via callback for all notifications.

One of the benefits of using tiny layers is that the runicast primitive does not have to

manage the details of setting up timers and doing retransmissions, since that is already

done by the stunicast module. In this way, the single-hop reliable unicast primitive can

concentrate just on dealing with acknowledgements.

The Rime stack also include two primitives called polite anonymous best-effort local

CHAPTER 2. BACKGROUND 30

broadcast primitive (polite) and identified polite best-effort local broadcasts (ipolite)

that are a generalization of the polite gossip algorithm from Trickle [40]. Trickle is an

algorithm designed to reduce the total amount of packet transmissions by not repeating

a message that other nodes have already sent. Basically it avoids that multiple copies

of a specific set of packet attributes is sent on a specified logical channel in the local

neighborhood during a time interval, and it can thus be useful for implementing nack

mechanisms. The difference between the polite and ipolite primitives is just the iden-

tification of the sender as a packet attribute (through the use of the broadcast layer)

introduced by the ipolite layer.

The division in single-hop and multi-hop layers can be seen in Figure 2.8. So far, the

single-hop layers (left side of the picture) have been described. They usually are the

fundament on which the multi-hop layers (right side of the picture) are built.

The best-effort multi-hop forwarding primitive (multihop) sends a packet to an identi-

fied node in the network by using multi-hop forwarding at each node in the network.

The application or protocol that uses the multihop primitive supplies a routing func-

tion for selecting the next-hop neighbor. If the multihop primitive is requested to send

a packet for which no suitable next hop neighbor is found, the caller is immediately

notified of this and may choose to initiate a route discovery process. When a next-

hop neighbor has been found, the multihop primitive uses the unicast primitive to send

packets to it. The reliable version of the multihop primitive is the best-effort multi-hop

forwarding primitive (rmh), that uses the single-hop reliable unicast primitive for the

communication between two single-hop neighbors.

The best-effort network flooding primitive (netflood) sends a single packet to all nodes

in the network. It uses polite broadcasts at every hop to reduce the number of redun-

dant transmissions. The netflood primitive sets on the packets the end-to-end sender,

the end-to-end packet ID and the time to live attributes, this last one to eliminate the

risk of routing loops. The reliable single-source multi-hop flooding (trickle) is im-

plemented with the same characteristics of netflood, but it performs retransmissions

of flooded packets, and packets are tagged with version numbers. The mesh routing

module (mesh) sends packets using multi-hop routing to a specified receiver in the net-

work. It exploits the route module (route), which handles the route in Rime, and the

Rime route discovery protocol module (route-discovery) that does route discovery for

Rime.

CHAPTER 2. BACKGROUND 31

Bulk transfers are also implemented in Rime. The modules rubc (reliable unicast

bulk transfer), rudolph0 and rudolph2 (single-hop reliable bulk data transfer), rudolph1

(multi-hop reliable bulk data transfer) have been designed for this task.

The Rime module for for the address management is called rimeaddr and the buffer

management module is called rimebuf. The latter module is fundamental to store or

retrieve the incoming or outgoing data to the network. Rime in fact uses a single

buffer for both incoming and outgoing packets. In case a layer need to queue data (like

the stubborn layers), the data can be copied into dynamically allocated queue buffers.

Rime does not specify how the queue buffers are managed after they are allocated. If a

protocol queues more than one queue buffer, it is up to the protocol to define how the

queue is handled.

For outbound packets the rimebuf consists of two parts: header and data. For incoming

packets, both the packet header and the packet data is stored in the data portion of

the Rime buffer. All access to the Rime buffer is done at a single priority level so no

locking mechanisms need to be used. Device drivers do not write to the buffer from

their interrupt handlers, but must write to the buffer at system priority.

The obvious and direct consequence of the Rime buffer design that uses a single buffer

for both incoming and outgoing packets, is the memory footprint reduction. The mem-

ory footprint reduction is also a goal achieved by the lightweight layering principle;

moreover the applications can express precisely how much of the communication fea-

tures they need. By making Rime part of the Contiki’s system core, which is always

present in memory, the burden (in terms of memory footprint) is shifted from applica-

tion to the system core and thus loadable programs are made smaller. Consequently

also the energy consumption for program loading is reduced. In memory-constrained

sensor nodes and in a general Wireless Sensor Networks environment, memory foot-

print and energy consumption reductions are very important properties, and the Rime

architecture design gives thus an enormous benefit.

Chameleon

The Chameleon architecture [3] is an adaptive communication architecture for sensor

networks with several purposes. The architecture is first of all designed to simplify

the implementation of sensor network communication protocols through the use of the

Rime protocol stack. Figure 2.9 shows the Chameleon architecture, which allows for

sensor network protocols that are implemented on top of the architecture to take ad-

CHAPTER 2. BACKGROUND 32

vantage of the features of underlying MAC and link layer protocols through the usage

of packet attributes instead of packet headers. Attributes contain the same informa-

tion normally found in packet headers, but are more generic and abstract. There are

pre-defined packet attributes, but applications and lower layer protocols may define ad-

ditional ones. Each packet attribute has also a scope which value (0, 1 or 2) specifies

how far the attribute will follow the packet.

Figure 2.9: The Chameleon architecture. Adapted from Dunkels et al.[3]

Chameleon allows outgoing packets headers to be formed independently of the proto-

cols or applications running within the architecture, because separate packet transfor-

mation modules handle packet header construction. In fact, the protocol logic in the

Rime stack described above does not deal with low-level details of packet headers such

as the placement, structure, and alignment of header fields. Such low-level details are

contained in the header transformation modules, which construct packet headers from

the packet attributes and sends the final packets to the link-level device driver or the

MAC layer.

Chameleon architecture incorporates the Rime stack, a set of network protocols run-

ning on top of the Rime stack and the Chameleon header transformation modules,

which create packets and packet headers from the output of the Rime stack. Applica-

tions run either directly on top of the Rime stack, or on top of communication protocols

CHAPTER 2. BACKGROUND 33

that run on top of Rime.

Applications and protocols pass application data down to the Rime stack. The Rime

stack adds packet attributes to the application data before it passes the application

data and packet attributes to the underlying Chameleon header transformation mod-

ule, which perform header field alignment, byte ordering and header compression.

Since many protocol header fields require only a few bits of information (typically flag,

version or type of packet fields), Chameleon header transformation modules also pack

single-bit fields, in order to avoid waste of separate byte fields.

In this way the total size of the header is reduced, and this is particularly important in

sensor networks, where packet sizes are small. As an example the Tmote Sky board

[22] restricts the size of radio packets to 128 bytes. This design let thus header com-

pression be naturally included in the architecture. Header parsing is performed on

incoming packets, and the production of bit-packed headers is, as discussed above, al-

ready a part of the architecture.

The header transformation mechanism is able to construct headers that are compatible

with any communication protocol. However, since a communication protocol is not

defined by its protocol headers, but also by its protocol logic, in case the protocol to

be impersonated contains protocol logic not implemented by the Rime protocol, the

Chameleon module must itself implement the missing parts of it. In case the proto-

cols implemented in a header transformation module need to send feedback up to the

application running on top of Rime, Chameleon sets packet attributes or, alternatively,

piggybacks the feedback information on acknowledgement packets.

Communication in the Chameleon architecture uses different logical channels. A chan-

nel is an abstraction that allows two or more end-nodes to communicate and that con-

tains a set of attributes. A module can open more than one channel: as an example

the Rime mesh module uses 3 channels: one for the multi-hop forwarding and two for

the route discovery. Each channel has its own set of protocols and packet attributes on

which the communicating parties must agree beforehand.

Figure 2.10 illustrates the concept of logical channels in the Chameleon architecture.

Two applications, Application 1 and Application 2, run on two different nodes and

communicate with each other using four logical channels, y, x, x+1, and x+2. Appli-

cation 1 uses a mesh routing protocol, which in turn uses a route discovery protocol,

CHAPTER 2. BACKGROUND 34

Figure 2.10: Two applications communicating with Rime. The first one uses a mesh

routing protocol on top of the Rime stack and the second one uses the Rime stack di-

rectly. Each communication path uses its own logical channel. Adapted from Dunkels

et al. [3].

and the best-effort multi-hop forwarding Rime primitive, multihop. Both nodes know

that the multihop primitive uses logical channel x, that the route discovery protocol

uses channels x+1 and x+2, and that channel y is used by Application 2. Both nodes

have agreed on this channel configuration before the communication is set up. When

an application opens a logical channel for a stack of Rime primitives, the primitives

register the packet attributes they use with Chameleon. Chameleon uses this infor-

mation both when constructing outgoing headers and when parsing incoming headers.

The process of constructing and parsing headers is deterministic and reversible. When

a packet is sent on a channel, Chameleon uses the attribute specification to construct

the packet header. Similarly, when a packet arrives on the channel, Chameleon parses

the header using the same attribute specification. The mapping of channels to output

devices is done either at compile time, at system boot-up, or at run-time. Chameleon

can multiplex multiple logical channels over a single physical link for example explic-

itly transmitting the channel number in a packet header, or it can use different physical

radio channels for different logical channels.

CHAPTER 2. BACKGROUND 35

uIP

uIP or Micro IP [39] is a small generic and portable TCP/IP implementation that suits

perfectly the Wireless Sensor Networks scenario with constrained memories: it has

been in fact designed to contain only the absolute minimal set of features for a full

TCP/IP stack.

Many features have not been implemented to reduce the code size, like the soft error

reporting mechanism and dynamically configurable type-of-service bits for TCP con-

nections. Despite that, uIP complies to the host-to-host communication requirements

of RFC1122 (Requirements for Internet Hosts).

uIP supports unicast, broadcast and multicast packets, TCP, UDP, and also ICMP, al-

though only the ICMP echo message is implemented and there is thus no support for

Path MTU discovery or ICMP redirect messages since neither of these is strictly re-

quired for interoperability.

Incoming packets are processed first by the IP layer, which will first drop the options

in the IP packet and will then examine the packet and see if destination and checksum

are correct. Fragment reassembly is implemented using a separate buffer and that will

pass the packet to the transport layer as soon as all fragments have been reassembled.

uIP is designed as a main loop that whenever there are incoming packets or a periodic

timeout has expired calls an handler function. The periodic timeouts are used to launch

TCP mechanisms depending on different timers.

The uIP stack does not use explicit dynamic memory allocation, but it uses instead a

single global buffer for holding packets and a fixed table for holding connection state.

The global packet buffer is large enough to contain one packet of maximum size. When

a packet arrives from the network, the device driver places it in the global buffer and

calls the TCP/IP stack, which will notify the corresponding application if the packet

contains data. Data have to be immediately copied into a secondary buffer by the ap-

plication, because the buffer will be obviously overwritten by the next incoming packet.

The same global packet buffer that is used for incoming packets it is also used for the

TCP/IP headers of outgoing data. It is possible to run the uIP implementation with

as little as 200 bytes of RAM, but such a configuration will provide extremely low

throughput and will only allow a small number of simultaneous connections. A com-

plete information about the details and functionalities that are included in uIP can be

found in ”Full TCP/IP for 8-Bit Architectures” [39], where this information on uIP

CHAPTER 2. BACKGROUND 36

has been taken from.

uIPv6. In response to the emerging IPv6-based standards such as 6LowPAN, the Con-

tiki operating system has integrated in the last months of 2008 the uIPv6 stack [41],

which is the first IPv6-ready stack for memory-constrained devices. The IPv6 Ready

certification ensures end-to-end interoperability between IPv6 sensors and any IPv6

capable device. uIPv6 is the smallest IPv6 Ready stack available so far, with a code

size of 11.5 Kb and 2 Kb RAM requirement.

2.3.7 Energy estimation for sensor nodes

Since sensor nodes have limited energy supplies, energy is of primary importance in

wireless sensor networks, and that is also the reason pushing research to find new

intelligent decision in order to reduce the energy consumption.

Current hardware platforms such as the Tmote Sky [22] or the ESB [26] do not provide

hardware mechanisms for measuring the energy consumption of the sensor node. In

Contiki, a software-based on-line energy estimation mechanism for small sensor nodes

called Energest [42], [43] has been implemented, which runs directly on the sensor

nodes and provides real-time estimates of the current energy consumption.

The energy estimation mechanism is invoked every time a hardware component is

switched on or off: when a component is switched on, the estimation mechanism stores

a time stamp. As the component is switched off again, a time difference is produced

and added to the total time that the component has been turned on. The estimation

mechanism keeps a list of all components and the time of which they have been turned

on. The mechanism then uses the current draw of each component to produce an es-

timate of the total energy consumption. The on-line energy estimation mechanism is

implemented in two lines of code in the device driver and it uses a linear model for the

sensor node energy consumption.

The total energy consumption E is defined as E
V = Im ∗ tm + Il ∗ tl + It ∗ tt + Ir ∗ tr +∑

(Ici
∗ tci

), where V is the supply voltage, Im the current draw of the microprocessor

when running, tm the time in which the microprocessor has been running, Il and tl

the current draw and the time of the microprocessor in low power mode, It and tt the

current draw and the time of the communication device in transmit mode, Ir and tr the

current draw and time of the communication device in receive mode, and Ici
and tci

CHAPTER 2. BACKGROUND 37

the current draw and time of other components such as sensors and LEDs.

The energy model does not contain a term for the idle current draw of the board itself;

this is embedded in the low power mode draw of the microprocessor. It must be re-

marked that anyway, the voltage level is assumed to be fixed so far, thus it is constantly

equals to 3 V.

2.3.8 The Coffee file system

Due to their properties like small size and low cost, flash memory devices have been

placed in many sensor network platforms such as the Sentilla Tmote Sky [22] and the

Crossbow MicaZ [25]. Persistent storage like flash memories enables numerous pos-

sibilities to sensor networks applications like data logging, databases or virtualization

of memory. Moreover, persisent storage has been demonstrated to reduce the radio

transmission energy consumption by Mathur et al. [44] through data batching.

The Contiki operating system integrates the Coffee file system [45], which provides a

programming interface for building efficient and portable storage abstactions for flash-

based sensor devices. Coffee is portable, high-speed and uses a small and constant

RAM footprint per file. This is very important for sensor networks that often are con-

strained in the RAM size, because non-volatile storage can be several orders of magni-

tude larger than the RAM and if RAM footprint is constant, it can elegantly scale with

large files. In RAM are only stored the end of file pointers of open files and a small

directory cache.

Coffee has a rich interface for higher-level storage abstractions and includes many

features like a basic directory support, garbage collection, format and contiguous space

reservation. Through the basic directory support it is possible to list the names of the

files and their corresponding sizes. The commands used to interact with the directories

are cfs opendir, cfs readdir and cfs closedir.

Coffee reclaims flash pages that have been marked as obsolete when removing files.

The garbage collector in Coffee ensures that sectors containing a large number of ob-

solete pages are reclaimed. When an allocation request cannot be satisfied due to lack

of space the garbage collector is called to solve the problem.

The primitive cfs coffee format is used to format the file system while the primitive

cfs coffee reserve is used to reserve the right amount of pages for the file. Since Cof-

fee divides a flash memory section into logical pages of 256 pages each, the file can

span into one or more pages. File pages can be allocated either implicitly by opening

CHAPTER 2. BACKGROUND 38

a file (predefinite amount of pages), either through the cfs coffee reserve primitive. In

both cases the page allocation algorithm reserves a number of consecutive pages to a

file among the free flash areas using a first-fit policy. In case the reserved size turns out

to be too small, the file is extended if space permits by reserving a new file and copying

the old file to it.

The most important feature in the Coffee file system is probably the micro log introduc-

tion. Conventional log-structured flash file systems force all files to share a page-based

log that spans over the full flash memory. Once a file is modified, an accompanying

micro log structure is created and linked with the file. Using cfs coffee configure log,

its allocated size and log granularity can be configured. This means that abstract stor-

age implementations can fine-tune their micro logs according to the expected access

pattern to increase the performance significantly. Micro log information is composed

of filename, log file start page, log record amount, log record size, maximum pages and

EOF hint, and it is stored in the flash memory to free up the scarce RAM for other uses.

Coffee supports normal file operations through primitives cfs read, cfs write, cfs open,

cfs close, cfs seek and cfs remove. While the first four primitives are self-explanatory,

the cfs seek allows to select the byte position from where start reading or writing. The

cfs remove primitive instead marks the file as obsolete, and will allow the garbage

collector to reuse that space in case of lack of space.

2.3.9 Simulation in Contiki

Due to the distributed nature of sensor networks and resource-constraints of sensor

nodes, code development for wireless sensor networks is challenging and time consum-

ing. JTAG debugging is useful to understand the application pattern, but debugging in

this environment can be a very long and costly operation, especially when monitoring

stack usage, etc. For these reasons, development of wireless sensor network applica-

tions is made often with the help of simulators, which have been created to speed-up

and simplify the development.

The Contiki operating system provides two simulators for wireless sensor networks

development: the MSPsim Java-based instruction level simulator for the MSP430 mi-

crocontroller and the COntiki Os JAva simulator (COOJA).

CHAPTER 2. BACKGROUND 39

MSPsim [46] is a Java-based instruction level simulator for the MSP430 microcon-

troller that simulates unmodified target platform firmware and that simplifies the tim-

ing simulation. The simulator is easily extensible with peripheral devices making it

possible to simulate various types of MSP430 based sensor nodes. MSPsim can show

a graphical representation of the sensor board in an on-screen window that allows a

system designer to visually verify that an application is correctly simulated.

COOJA [47, 48] combines low-level simulation of sensor node hardware and simu-

lation of high-level behavior in a single simulation. The simulator is implemented in

Java, making the simulator easy to extend, but allows sensor node software, such as

Contiki processes, to be written in C. COOJA is also able to simulate non-Contiki

nodes, such as nodes implemented in Java or even nodes running another operating

system. All interactions with simulations and simulated nodes are performed via plug-

ins. An example of a plugin is a simulation control that enables a user to start or pause

a simulation. Both interfaces and plugins can easily be added to the Java simulator,

enabling users to quickly add custom functionality for specific simulations.

COOJA supports three different abstraction levels. Nodes simulated at the application

or networking level are implemented in Java without any connection to Contiki. Nodes

simulated at the operating system level execute deployable Contiki code, but compiled

as native code. The machine-code level abstraction level in COOJA is enabled by con-

necting a Java-based microcontroller emulator to the simulator [47].

The improvements of Contiki simulators is constantly ongoing and many features have

been added recently to improve the quality of simulation, like the sensor checkpointing

in order to enable repeatability in testbeds and realism in simulators by Österlind et al.

[49, 41].

CHAPTER 2. BACKGROUND 40

2.4 The Tmote Sky platform

Tmote Sky [22] is an ultra low power wireless module for use in sensor networks,

monitoring applications and rapid application prototyping, sold by Sentilla (formerly

Moteiv Corporation). It has integrated radio, antenna, microcontroller, leds, program-

ming capabilities and a wide range of sensors like humidity, temperature and light.

The low power operations of the Tmote Sky module is due to the ultra low power

MSP430 microcontroller. This 16-bit RISC processor features extremely low active

and sleep current consumption. In order to minimize power consumption, it is in sleep

mode during majority of the time, wake up as fast as possible to process, then return to

sleep mode again. It uses a USB controller from FTDI to communicate with the host

computer and features the Chipcon CC2420 radio, which is an IEEE 802.15.4 com-

pliant radio providing reliable wireless communication, for wireless communications.

The radio provides fast data rate and robust signal. It is controlled by the microcon-

troller through the SPI port and can be shut off for low power duty cycled operation.

The internal omnidirectional antenna may attain 50-meter range indoors and up to 125-

meter range outdoors.

Figure 2.11: Front view of the Tmote Sky module [4].

CHAPTER 2. BACKGROUND 41

Figure 2.12: Back view of the Tmote Sky module [4].

2.4.1 Sensors

A variety of sensors are integrated in the Tmote Sky platform, respectively humidity,

temperature and light sensors.

Humidity and temperature. Humidity and temperature sensor is manufactured by

Sensirion AG. The SHT11 sensors [50] are produced using a CMOS process and are

coupled with a 14-bit A/D converter. They are calibrated and the calibration coeffi-

cients are stored in the sensor’s onboard EEPROM. The low power relative humidity

sensor is small in size and may be used for a variety of environmental monitoring ap-

plications. The temperature accuracy is 0.5◦C.

Light. Tmote Sky has two integrated photodiodes produced by Hamamatsu Corpora-

tion, which sense the photosynthetically active radiation and the entire visible spectrum

including infrared.

2.4.2 Microprocessor

The low power operation of the Tmote Sky module is due to the ultra low power

Texas Instruments MSP430 F1611 microcontroller [5] featuring 10kB of RAM, 48kB

CHAPTER 2. BACKGROUND 42

of flash, and 128B of information storage. This 16-bit RISC processor features ex-

tremely low active and sleep current consumption that permits Tmote to run for years

on a single pair of AA batteries. The MSP430 has an internal digitally controlled os-

cillator (DCO) that may operate up to 8MHz. The digitally controlled oscillator may

be turned on from sleep mode in 6 us, however 292 ns is typical at room temperature.

When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. A

variety of peripherals are available including SPI, UART, digital I/O ports, Watchdog

timer, and Timers with capture and compare functionality. The F1611 also includes a

2-port 12-bit DAC module, Supply Voltage Supervisor, and 3-port DMA controller.

2.4.3 PC Communication

Tmote Sky uses a USB controller from FTDI to communicate with the host computer.

Once the FTDI drivers are installed on the host, Tmote Sky appears as a COM port in

Windows or as a device in /dev in Linux, OSX, and BSD. Multiple Tmote Sky motes

may be connected to a single computer’s USB ports at the same time and each mote

will receive a different COM port identifier.

2.4.4 Power and voltage

Tmote Sky is powered either by USB or by two AA batteries. If the Tmote Sky module

is plugged into the USB port for programming or communication, it will receive power

from the host computer and thus no battery pack is necessary. The mote operating

voltage when attached to USB is 3V. In absence of USB connectivity, the module

can be powered with two AA battery which may be used in the operating range of

2.1 to 3.6V DC. However the voltage must be at least 2.7V when programming the

microcontroller flash or external flash. Typical operating conditions can be retrieved

from the Tmote Sky data sheet [22] and are summarized in the table 2.2.

Table 2.2: Typical operating conditions of the Tmote Sky module [4].

CHAPTER 2. BACKGROUND 43

Battery voltage

In the Tmote Sky platform, it is possible to measure the current operating battery volt-

age through the ADC12 module of the MSP430 microprocessor. The ADC12 module

is a high-performance 12-bit analog-to-digital converter that implements a 12-bit Suc-

cessive Approximation Register core, sample select control, reference generator and a

16 word conversion-and-control buffer.

The ADC core converts an analog input to its 12-bit digital representation and stores

the result in conversion memory. The core uses two programmable voltage levels (VR+

and VR−) to define the upper and lower limits of the conversion. Their value can be

defined in the ADC12MCTLx, ADC12 Conversion Memory Control Registers which

schema is shown in Figure 2.13a.

Figure 2.13: Internals of the ADC12 registers in the MSP430 microprocessor [5].

To obtain a good approximation of the battery voltage level, respectively values 0 and

CHAPTER 2. BACKGROUND 44

11 have been chosen for registers SREFx and INCHx. Value 0 in register SREFx

selects as voltage references VR+ = AVCC and VR− = AVSS . Register INCHx selects

the input channel, that with value 11 corresponds to (AVCC−AVSS)
2 .

The ADC12 module contains a built-in voltage reference with two selectable voltage

levels: 1.5 V and 2.5, and the reference value can be set through the control reg-

isters. The ADC12 core is configurable by two control registers, ADC12CTL0 and

ADC12CTL1. Through those register it is possible to set multiple parameters. In the

case of battery voltage we need to access the REFON bit which enables the internal ref-

erence and the REF2 5V bit which sets the reference either to 1.5 or 2.5 V depending

on its value. The core is enabled with the ADC12ON bit, and the ENC bit enables the

conversion, thus it must be set to 1 before any conversion can take place. The internal

structure of the two control registers is shown in Figure 2.13b.

SHT1x and SHT0x bits defines the number of ADC12CLK cycles in the sampling

period for registers ADC12MEM0 to ADC12MEM15. The other registers are not rel-

evant for the battery voltage retrieval, as well as the ADC12CTL1, that is not used to

retrieve the battery voltage value.

The digital output NADC is full scale (0FFFh) when the input signal is equal to or

higher than VR+, and zero when the input signal is equal to or lower than VR−. The

input channel and the reference voltage levels (VR+ and VR−) corresponds to the one

defined in the conversion-control memory ADC12MCTLx register. The resulting con-

version formula for the ADC result is: NADC = 4095 ∗ (Vin−VR−)
(VR+−VR−) .

The NADC value can be retrieved in the ADC12 Conversion Memory Register 2. The

12-bit conversion is right-justified, thus bit 11 is the most significant bit, and bits 15 to

12 are set to 0. For the battery voltage retrieval the ADC12MEM2 register is read.

After setting the registers are described above, it is thus possible reading the ADC

output NADC to deduce the battery voltage value Vin simply inverting the ADC result

formula shown above. At the same way, exploiting the ADC12 module of the MSP430

microprocessor, it is possible to retrieve the value of the internal temperature sensor.

To use the on-chip temperature sensor, the analog input channel INCHx = 1010 should

be selected and the sample period must be greater than 30 microseconds.

2.4.5 Radio and antenna

Radio. Tmote Sky features the Chipcon CC2420 radio for wireless communications.

The CC2420 is an IEEE 802.15.4 compliant radio providing the PHY and some MAC

CHAPTER 2. BACKGROUND 45

functions. With sensitivity exceeding the IEEE 802.15.4 specification and low power

operation, the CC2420 provides reliable wireless communication. The CC2420 is

highly configurable for many applications with the default radio settings providing

IEEE 802.15.4 compliance. The CC2420 is controlled by the TI MSP430 microcon-

troller through the SPI port and a series of digital I/O lines and interrupts. The radio

may be shut off by the microcontroller for low power duty cycled operation.

The CC2420 has programmable output power. Common CC2420 register values and

their corresponding current consumption and output power are shown in table 2.3. The

CC2420 provides a digital received signal strength indicator (RSSI) that may be read

any time. Additionally, on each packet reception, the CC2420 samples the first eight

chips, calculates the error rate, and produces a link quality indication (LQI) value with

each received packet.

Table 2.3: Output power settings and typical current consumption at 2,4 GHz [51].

Antenna. Tmote Sky’s internal antenna is an Inverted-F microstrip design, so it is a

wire monopole where the top section is folded down to be parallel with the ground

plane. Although not a perfect omnidirectional pattern, the antenna may attain 50-meter

range indoors and upwards of 125-meter range outdoors. The real antenna’s perfor-

mance depends however on the presence of the battery pack.

2.4.6 External flash

Tmote Sky uses the ST M25P80 40MHz serial code flash for external data and code

storage. The flash holds 1 MB of data and is decomposed into 16 segments, each 64kB

in size. The flash shares SPI communication lines with the CC2420 transceiver.

CHAPTER 2. BACKGROUND 46

2.5 The ScatterWeb MSB-430 platform

The Modular Sensor Board (MSB) is a robust wireless sensor network module espe-

cially designed for research and education, sold by ScatterWeb GmbH since year 2007

[23], [6]. It has been built in cooperation with the Freie Universität Berlin, and it rep-

resent the evolution of the Embedded Sensor Board (ESB) [26] that was built in 2003.

It is based on an MSP430 series microcontroller, and it has integrated radio, micro-

controller, SD-card socket, a red led and a wide range of sensors like humidity and

temperature sensors and a three-axis accelerometer. The platform can be programmed

and debugged via JTAG interface and accessed with serial communication via one

UART interface. There are moreover 18 freely disposable digital I/O pins. Wireless

communication is featured through the Chipcon CC1020 radio, which uses the license

free 868 MHz ISM band.

Figure 2.14: Front view of the ScatterWeb core board MSB-430 [6].

2.5.1 Sensors

Three sensors are integrated in the MSB-430 platform: a humidity sensor, temperature

sensor and a three-axis accelerometer. Other sensors can be added through the external

board.

CHAPTER 2. BACKGROUND 47

Figure 2.15: View of the MSB-430-T Carrier Board with USB interface for UART

communication, JTAG interface for programming and debugging, battery holder and

power switch.

Humidity and temperature. Humidity and temperature sensor is manufactured by

Sensirion AG. The SHT11 sensors [50] are produced using a CMOS process and are

coupled with a 14-bit A/D converter. They are calibrated and the calibration coeffi-

cients are stored in the sensor’s onboard EEPROM. The low power relative humidity

sensor is small in size and may be used for a variety of environmental monitoring ap-

plications. The temperature accuracy is 0.5◦C.

Three-axis accelerometer. Manufactured by Freescale [52], the MMA7260Q ac-

celerometer measures acceleration in three axes with 1.5 to 6 g sensitivity and can

be used in movement detection and to support positioning.

2.5.2 Microprocessor

The MSB-430 platform has low power operations due to the ultra low power MSP430

microcontroller. The 16-bit RISC processor MSP430F1612IPM [5] features extremely

low active and sleep current consumption, with 5 Kb RAM and 55 Kb flash. It is

clocked by a digital controlled oscillator (DCO) which can be configured from software

between 100 kHz and 8 MHz. For synchronization the external 32.768 kHz quartz is

used.

CHAPTER 2. BACKGROUND 48

2.5.3 I/O interfaces

All I/O ports that are available for custom additions are externally accessible. Digital

I/O pins are freely disposable, 8 of which are with IRQ support. The platform can be

programmed and debugged via JTAG interface and accessed with serial communication

via one UART interface, and together with a FTDI converter-cable, USB connectivity

is enabled.

2.5.4 Power

The MSB-430 platform can be powered either by USB through the UART interface or

by three AAA batteries placed into the carrier board in Figure 2.15. A power switch

selects the USB or battery power. The low power consumption allows the lifetime of

the module up to 5.5 months with standard batteries according to Baar et al. [23].

2.5.5 Radio chip

The MSB-430 uses the Chipcon CC1020 radio chip, which uses the license free 868

MHz ISM band that guarantees a wide coverage and provides up to 8.6 dBm transmis-

sion tunable power. The Chipcon CC1020 transceiver [53] is used in combination with

an additional low-noise amplifier on the receiver and can transmit a raw rate of 153.6

kbit/s and 19.2 kbit/s when using Manchester encoding. The CC1020 includes a digital

received signal strength indicator (RSSI) which is used for carrier detection and can

be used for simple ranging and quality measurements. Differently from the CC2420

radio chip which is featured in the Sentilla Tmote Sky, it does not provide a link quality

indicator.

2.5.6 Secondary storage

Differently from the Sentilla Tmote Sky [4], the MSB-430 includes an SD/MM card

slot for secondary storage instead of an EEPROM. Given the current dimension of SD

cars, up to 16 GB of data can be stored and this represent a good amount compared to

the limited 1 MB flash dimension of the Sky node.

Chapter 3

Wireless Sensor Networks
Application Layer

This Chapter provides an overview of wireless sensor networks applications and the

state of art in application support. It highlights why an application support is needed,

and what challenges the introduction of a support layer can solve, providing clear ex-

amples. Furthermore, it also illustrate the challenges that must be faced when trying to

design an application support, given the wide range of sensor network applications.

Akyildiz [15] defines an application layer as a service that provides several manage-

ment tools and an user-friendly way to communicate with the rest of the network. It

should mask the hardware limitations and should help to improve scalability, robust-

ness, fault tolerance, resource usage and to maximize the distribution of services and

the lifetime of the system. In some cases, it should also be responsible of providing

security and guarantee quality of service to the network.

Because of the sensor networks nature, the design of an application layer or support

is extremely challenging: wireless devices are built for a wide range of applications

and purposes. Moreover a general solution may be unappropriate for sensor networks,

because may not address their limitations and variety.

For these reasons, no application layers have been ported from existing networking

solutions, nor new application layer protocols have been proposed or designed specif-

ically for sensor networks, and thus very little amount of work has been published on

49

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 50

this field. Instead, middleware support is the current trend to give aid to sensor net-

works applications, and solutions like MiLAN [20] and adaptation layers [54] arose in

the last years.

Römer et al. [55] explain how the main purpose of middleware for sensor networks

should be to support the development, maintenance, deployment, and execution of

sensing-based applications. They also show how a careful study of applications’ needs

is fundamental for a good design. Thus, in order to design a valid application layer or

in general an application support sub-layer for sensor networks, a complete and careful

study of the WSN applications characteristics, limitations, common needs and prob-

lems is needed: depite their variety they more or less share the same problems.

The aim of the following chapter is threefolded. Firstly, an overview of WSN appli-

cation layer is given. The generic design for a WSN application layer is illustated in

Section 3.1, and some of the proposed middleware supports for sensor networks are

analyzed in Section 3.2. Section 3.3 illustrates a detailed study of the most common

challenges in the implementation and design of today’s sensor networks applications. It

shows how the introduction of an application support sub-layer would help to improve

the application design, robustness, and development. The challenges are described for

a full comprehension of the design choices, since the observations made in this section

are the starting point driving the design and implementation of the application support

sub-layer detailed in Chapter 4. Lastly, the consequences that the application support

layer introduction would bring to the general sensor networks stack architecture are

analyzed in section 3.4.

3.1 Generic design for a WSN application layer

As mentioned in the previous chapters, the research community has focused mainly on

enhancements of algorithms and lower layers of the OSI model: only the four lower

layers shown in figure 3.1 have captured the researchers attention. New MAC and

routing techniques, parameters adjustment, security of systems and robustness have

been widely studied, but only little effort has been put on applications and higher OSI

layers.

This is confirmed by Ilyas and Akyildiz [13, 15], which represent the basic literature

for application layer design in wireless sensor networks. In their survey, Akyildiz et

al. describe the status of art in each layer of the OSI stack in wireless sensor networks

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 51

Figure 3.1: Comparison between the layers in the TCP/IP stack and the OSI stack.

and about the application layer protocol they use the eloquent expression: ”potential

application layer protocols for sensor networks remain a largely unexplored region”.

Also Heinzelman et al. [20] confirms that the real needs of application are not taken

into account when designing the protocols nowadays. This confirms that the research

community focus is too much on the lower layers of the OSI stack rather than on the

application layer.

Three possible application layer protocols types are introduced by Akyildiz et al. [15]:

Sensor Management Protocol (SMP), Task Assignment and Data Advertisement Pro-

tocol (TADAP) and Sensor Query and Data Dissemination Protocol (SQDDP).

Sensor Management Protocol makes the hardware and lower layer software transpar-

ent, Task Assignment and Data Advertisement Protocol sends user-interest to a subset

of nodes to the higher layers or the whole network, while the Sensor Query and Data

Dissemination Protocol issues queries and responds to queries, which can be attribute-

based or location-based. The rest of the section describes these three application layer

protocols.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 52

3.1.1 Sensor Management Protocol (SMP)

Sensor Management Protocol is used to interact with the sensor network. Nodes can be

accessed and managed through this protocol. In order to accomplish this work, many

are the administrative tasks that SMP should provide.

Firstly, attribute-based naming schemes should be created and rules introduced. In this

way, nodes can be accessed using the specified attributes or for example using location-

based addressing.

Sensor nodes may then be clustered or aggregated based on their different attributes

or location. As an example, a typical clustering group division is made by the area in

which the sensor node is deployed. The protocol should obviously allow a node to be

moved into another area or to change its attributes.

Secondly, a sensor network configuration language should be provided by SMP, in or-

der to query the sensor network status of nodes, reconfigure the network, or simply

check the sensor network current configuration. Nodes may be turned on and off re-

motely but all the issues related to the data provided by sensors or the tasks they should

perform are managed by the other protocol described in the next sections.

SMP is also responsible of exchanging data related to location-finding algorithms and

to guarantee time synchronization of the sensor nodes, authentication, key distribution,

and security in data communications.

3.1.2 Task assignment and Data Advertisement Protocol (TADAP)

The Task assignment and Data Advertisement Protocol deals with interest dissemina-

tion in the sensor network. Users send their interest to a sensor node, a subset of the

nodes, or the whole network. Interest may be an attribute, a phenomenon or a triggering

event.

Alternatively, sensor nodes can advertise the available data to the users and the users

can query the data in which they are interested. An application layer protocol that pro-

vides the user software with efficient interfaces for interest dissemination is useful for

lower layer operations. For example routing can be improved and optimized based on

the user provided interests or sensor available data.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 53

3.1.3 Sensor Query and Data Dissemination Protocol (SQDDP)

The sensor query and data dissemination protocol (SQDDP) provides user applications

with interfaces to issue queries, respond to queries, and collect incoming replies.

Queries may be issued to a specific node or broadcasted to all nodes in the sensor net-

work. Based on the rules, attributes and naming schemes specified with SMP, queries

may be attribute-based (also called data-centric queries) or location-based (also called

geographical queries). For instance a location-based query may address the nodes

which are located in a specific region or area X. Alternatively an attribute-based query

can address the nodes in which the temperature is exceeding 30◦C. Queries can be

location-based and attribute-based at the same time: following the previous examples,

the query can address the nodes in region X exceeding 30◦C temperature.

Sensor query languages and types

An example of Sensor Query and Tasking Language (SQTL) is proposed by Shen et

al. [56] and supports three types of events, which are defined by keywords receive,

every and expire. The receive keyword defines events generated by a sensor node when

it receives a message; every keyword defines events occurring periodically due to a

timer time-out; and expire keyword defines events occurring when a timer is expired.

If a sensor node receives a message intended for it that contains a script, it then executes

the script.

A well-known in-network query processing is TinyDB [57], designed for the TinyOS

architecture, that treats sensors data as a database, and defines an SQL-like language

to query and retrieve data. However, some limitations exists with respect to the widely

used SQL language: for example the join operator between tables is missing. Addi-

tional examples are user defined queries, which are characterized by their own key-

words, for example type, timestamp, location.

Whatever the query language is, three are the possible kinds of query performed: con-

tinuous queries, snapshot queries and historical queries.

Continuous queries periodially collect data over long period of time: they are usually

timer-driven. Snapshot queries collect data about a precise point in time: they are

typically used to query only the current status of data. Historical queries collect data

about a specific interval of time in the past, or a summary from a certain point in time

up to the present.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 54

3.2 Middleware support for WSN applications

Although real application layers have not been explored that much by the research

community, the main trend of the last years was generic application support through

middleware implementations. Different targets were aimed, from better sensor data

acquisition [58] and aggregation [59] to network management support.

Heinzelman et al. [20] designed MiLAN (Middleware Linking Applications and Net-

works), a middleware that continuously adapts the network configuration to meet the

applications’ needs. It does so by receiving information from the individual applica-

tions about the QoS requirements and information from the network about available

sensors and resources such as sensor energy and channel bandwidth.

Avvenuti et al. [54] designed an application adaptation layer for wireless sensor net-

works for reconfiguration of applications that combines the efficiency of execution of

native code with the flexibility and ease of programming of virtual machines. Applica-

tion change their operating conditions through the intervention of an adaptation layer

that intercepts calls to primitives and library functions made by the application, and

modifies the effects of such calls by executing specific fragments of code.

Some other middleware approaches have been proposed, and can be found in Chapter

6. However, all of them address a specific challenge. Moreover, they do not constitute

a real application support, because they do not cooperate directly with the application,

nor they are targeted to give the programmer higher-level primitives. My proposal is a

modular support layer or middleware that includes many several different tiny modules,

one for each of the sensor networks’ main challenges, which are described in the next

section.

3.3 WSN application design challenges

A WSN application goal is usually not to be user-friendly, but it is more often to meet

the sensor networks properties described in the previous chapters. Certain applications

may require to focus more on fault tolerance and reliability, some others on easiness

and speed of deployment. It may be difficult to obtain such properties if there is no

support that easily allows to retrieve all the functionalities provided by the operating

system and the potential offered by the device.

Although their wide and different goals, applications running on these embedded tiny

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 55

devices share the same needs: many of the services and features needed by the wireless

sensor network applications are common, since the properties of the devices are similar.

For example all the applications have to deal with energy consumption and battery

lifetime, as well as with topology monitoring. A support sublayer that would provide

the application with a better power management and increase for example the fault

tolerance can improve performance and decrease complexity of applications.

These are the reasons why an application support sub-layer should mitigate all the

common challenges in application design, including the deployment phase. The next

paragraphs describe some of the main common challenges in WSN applications, and

it is shown how some of them could be solved by the introduction of an application

support sub-layer.

3.3.1 Energy consumption and battery lifetime estimation

While energy consumption is an important property in mobile networks, it is the most

important metric to evaluate performances of sensor networks. Sensing, data process-

ing and communications affect the energy consumption and thus the lifetime of the

system. Indirectly, the residual life of the system, that usually coincides with the ex-

haustion of the batteries, should be easily monitorable by an application. Although

applications should always use as few energy as possible, they often have to modify

their behavior based on the battery status, for example switch off some components or

modifying routing schemes, as remarked by Lachenmann et al. [60].

A typical example of the benefits brought by a battery lifetime monitoring module is

the Sensor Contextaware Adaptive Routing (SCAR) [61, 62, 63]. SCAR is a perfect

example of how an application can improve its performance based on context infor-

mation like for example the battery lifetime of the system. This routing approach uses

prediction techniques over context of the sensor nodes to foresee which of the sensor

neighbors are the best carriers for the data messages. Each node evaluates its connec-

tivity rate, battery level and the forecasted values are combined in order to predict the

future evolutions of the system.

The availability in a support sub-layer of a battery monitor would represent an impor-

tant improvement for applications. They could in fact easily implement services like

SCAR or even more sophisticated and effective energy-saving schemes. Applications

can decide to switch off some components or perihperals to save energy and maximize

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 56

the lifetime of the system.

By monitoring the battery level, it is also possible to predict for how long the data

originated by sensors will be meaningful: in fact sensors like the Sensirion SHT11 [50]

return wrong values below a certain voltage threshold.

3.3.2 Battery modelling

Estimate the residual lifetime of the battery is also a challenge because it is hard to de-

fine a proper model for batteries. Although a battery can be simply described as a cell

consisting of an anode, a cathode and an electrolyte that separates the two electrodes

and allows transfer of electrons as ions between them, it hides many issues and chal-

lenges. These challenges have been faced when trying to model the batteries during

this project work, and will now be analyzed and detailed, for a better comprehension

of the design choices.

Physical and electro-chemical properties

There are five main properties that must be considered when targeting the battery life-

time estimation. First of all batteries are not all the same. They may differ for type,

capacity, voltage, brand, electro-chemical composition, etc. Thus the first properties to

be considered are the physical and chemical properties: for example Ni-Cd and Ni-MH

cells behave differently from Li-Ion batteries. Figure 3.2 shows the different discharge

curve for the two kind of batteries. Li-Ion batteries present a more linear characteristic

over time and a linear equation may be a good approximation as shown by Behrens

et al. [7]. However, in this implementation, the focus will be put on Ni-MH, because

of their wider common usage as traditional AA batteries. Moreover, Li-Ion batteries

never entered the sensor network market, due to their high cost.

Battery type

Other than the pure chemical and physical properties, batteries must also be distin-

guished for their rechargeability. Experiments that I have carried out throughout this

Thesis work show that non-rechargeable and rechargeable batteries have different dis-

charge curves that cannot be merged into a single similar mathematical function, but

must be treated separately in order to obtain an acceptable estimation. Figure 3.3 shows

the different discharge curve of rechargeable and non-rechargeable batteries. Data is

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 57

Figure 3.2: Typical discharging curve of voltage in Li-Ion and NiCd/NiMH batteries.

Taken from Behrens et al. [7].

retrieved in experiments carried out with the same configuration (mote, room, tem-

perature). The two curves are different and it is possible to notice how rechargeable

batteries present a more flat discharge behavior with respect to the non rechargeable

ones. Although it may appear that rechargeable batteries have a shorter life with re-

spect to non-rechargeable, it must be considered that using a cut-off voltage of 2.4 V the

lifetime of both battery types coincides. I used Duracell Plus MN1500 batteries [64].

Due to the completely different nature of those batteries, it is worthless to adopt a

single function that would interpolate both behaviors. For this reason the two bat-

tery types must be treated separately. In the rest of this Thesis, I will focus only on

non-rechargeable batteries. The choice is mainly driven by the very limited use of

rechargeable batteries and massive use of non-rechargeable batteries in sensor networks

nowadays.

Temperature

The experiments on rechargeability were carried out under the same environmental

conditions. If conditions were not constants, the curves would have been much dif-

ferent. Temperature, in fact, strongly affects the battery lifetime and behavior: the

higher the temperature, the longer the lifetime of the battery. According to the Dura-

cell manual [8], the temperature effect on the discharge curve is absolutely relevant:

as current drain increases, temperature impact becomes more dramatic. This has been

confirmed by the experiments that I carried out during the Thesis and that are shown

in Figure 3.4. Figure shows the experimental results on the temperature impact on bat-

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 58

Figure 3.3: Discharging characteristics of the voltage in rechargeable and non-

rechargeable batteries. Data is retrieved experimentally at 25◦C with a current drain of

approximately 31 mA.

teries when high loads are applied to the battery pack. In this case radio and LEDs are

switched on all time, and the current drain reaches 34 mA.

Current discharge profile

Together with the temperature, the parameter that influences most the lifetime of a

battery and its discharge curve is the current discharge profile. If a current of magnitude

greater than the rated current of the battery is discharged, the efficiency of the battery

and its lifetime decrease. Current drain depends on the load applied to the battery.

Figure 3.5 shows the different discharging curves depending on the loads, provided by

Duracell [8].

Shelf life

There is no insurance that even a new battery contains 100% of the initial capacity.

Despite their long shelf storage life, manufacturers claim that alkaline cells will provide

less than their initial capacity. For example after storage at room temperature (21◦C)

the cells contain 93 to 96 percent of initial capacity after one year and 85 percent after

4 years. This is due to the storage conditions that may accelerate the degradation of

the chemical cells, and affect the batteries that are kept at high temperatures and high

humidity levels.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 59

Figure 3.4: Discharging voltage curve of batteries at different temperatures. Experi-

mental data was taken using approximately 34 mA as current drain.

Battery relaxation

If a battery is discharged for short time intervals followed by idle periods, the battery

partially recovers the capacity lost in previous discharges. This phenomenon is well-

explained by Chiasserini et al. [65], where a stochastic model has been introduced to

count the effects of idle periods. Such effect, also called recovery or relaxation effect,

affects performances whenever a battery has started consuming and it has left unoper-

ative for some time. The relaxation effect has, as a direct consequence, the rise of the

battery voltage, that tries to reach the nominal value. Thus, the initial voltage provided

by a battery just inserted into the device will be higher than the actual one.

It is necessary to deal with the time in which the battery voltage has higher values than

the actual ones. In this amount of time, the retrieved value is not trustworthy and esti-

mation would be made wrong. Figure 3.6 shows the behavior of a half-capacity battery

that was left unoperative for some days. The voltage increased to reach the nominal

value and needs a couple of hours to stabilize to the actual value. This applies for an

old battery as well as for a new battery: whenever a battery relaxed for an amount of

time, it will show an higher voltage value when a load is applied. This period of time

that will be called transient time, must be carefully studied in order to give a correct

estimation based on the voltage. We can either wait for the voltage to be steady, or

compute a relationship and subtracted to the measured voltage value. In any case, the

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 60

Figure 3.5: Discharging voltage curve of batteries with different loads. Taken from the

Duracell manual [8].

transient time in which the voltage is not stable should be discarded from the evaluation

or correctly handled.

3.3.3 Robustness to the environment and autoconfiguration

One of the main problems of sensor networks is the extremely high variability of the

environmental conditions, which often causes mismatches between the results obtained

with emulation and real-world deployments. This can be due not only to the electro-

magentic interference, but for example also by moving people, weather effects, and

thermal excursion, that can cause different transmission and sensing patterns.

Robustness to dynamic environment is an important issue in sensor networks. WSNs

should be robust, self-configuring, self-healing and adaptive. Application should be

able to monitor and answer quickly to environmental changes. Moreover, sensors are

often unreliable and sensed values may vary a lot from each other. This implies that

decisions based only on snapshot queries are very dangerous, because a single value

can give an erroneous information.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 61

Figure 3.6: Discharging voltage curve of a new and an old battery. In both cases the

battery voltage needs a couple of hours to stabilize to the real value.

An example of this can be the selection of the communication channel: if the analy-

sis of the channel is based only on a single snapshot at a certain period of time, the

selection is very likely to be wrong on a long-term basis, as also confirmed by real

deployment experiences. Radio channel selection is very important to overcome fre-

quent scenarios in which the radio channel presents an high level of interference. For

example Wi-Fi may have a disruptive effect on some channels, as well as microwaves,

RFIDs, and other electronic devices. If a node has to select the radio channel, it usu-

ally queries all the channels and selects the current best one. Given the unreliability of

snapshot queries, the channel selection may be wrong, as suggested by the following

real experience. A node deployed in an office environment was self-configuring on the

best channel periodically every day, in order to improve the communication. However,

communication was experiencing severe problems, and poor delivery was reported.

The channel selection was made with snapshot queries at 12 AM (midnight) every day,

thus ignoring the channel noise pattern of daytime. This means that the interference

caused by microwaves, Wi-Fi and people in the office during the daytime was not taken

into account when taking the decision. I run a data collection in the same radio channel

for 48 hours, and the pattern of the noise interference is shown in Figure 3.7. It is

evident the regularity of the pattern: the channel is noisy in daytime and free during

the night.

In this case, the optimal choice is a 24 hours historical query that would guarantee a

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 62

Figure 3.7: Radio interference over one of the 16 radio channels in the 2.4 GHz band.

Data is retrieved over 48 hours and the pattern is regular: the channel is noisy in day-

time and noise-free during the night.

broader knowledge of the radio channels. However, this may obviously not be enough.

If the selection is made every 7 days, and it happens to be made on the weekend, the

same problem may arise. In that case an even broader knowledge of the radio channels

would be needed. Figure 3.8 shows the noise interference in the same radio channel

over a complete week: the channel is less noisy during the weekend.

Following these observations, it would be a good option to ponderate the decisions on

more than a single value. In this way, a continuous or historical query represents the

best choise for channel selection. It must be remarked that channel selection is only an

example of this application: the same problems arise for example in outdoor environ-

ments, where sensed data may be affected by weather conditions, people that cross the

sensed region, a blast of wind, etc.

If on one hand it is very important to enable continuous and historical queries to in-

crease the robustness of the applications, it may not represent the best choice in many

other cases. Considering past data may imply a low reactivity of the system to new

changes. Reactive systems cannot base their decisions on too long-term data: system

would react in a very slow way to changes if, for example, a 7 days pattern is selected.

In any case, it is the application or the developer that should select the more appro-

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 63

Figure 3.8: Radio interference over one of the 16 radio channels in the 2.4 GHz band.

Data is retrieved over 7 days and the pattern is regular: the channel is less noisy during

the weekends.

priate kind of query, as long as both snapshot, continuous and historical queries are

available and easy to retrieve. The main problem is that often only snapshot queries

are available, and developers have to implement both historical and continuous queries

themselves.

The application support layer introduced in the next chapter will present a practical

solution for enabling all kind of queries. Upon application request, sensed values are

logged into the secondary storage that is available in many platforms as seen in Chap-

ter 2. Applications will be able to easily select historical and continuous queries as

snapshot queries with no additional work required by developers. In this way, it will

be much easier to improve reliability and robustness of applications.

The log concept is also useful to solve another big challenge in wireless sensor net-

works: the topology monitoring problem in dense networks that is described in the

next subsection.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 64

3.3.4 Topology monitoring

Topology monitoring is a common problem that arises especially in dense networks.

There are two main challenges. On one hand it is very hard to mantain the global

picture of the network, and on the other hand it is problematic to understand the faults

in case of device or network failures.

Data from the deployed nodes should be always available to the nodes that make re-

quests: nodes often need to query performance, energy consumption, battery lifetime

from their neighbors. The reason is to give the applications the most complete picture

in order to enable more precise decisions and schemes, but can also be administrative.

For example one node should monitor the status of the whole network and raise alarms

to the user. This would be typical in surveillance wireless sensor networks, where usu-

ally a sink node monitors the status of the nodes in the network trying to find anomalies

and eventually send an alarm to the user.

A key issue in topology management is that data exchange dramatically increases when

nodes are polled to perform an health monitoring of the network, thus increasing the

energy consumption. Sensor network management tasks should be performed with

lightweight operations and with minimum overhead and energy consumption. The

way in which topology monitoring is designed should guarantee minimal data storage

and respect of the memory constraints of sensor nodes. Adaptivity to topology changes

and large scale networks should also be ensured.

Every management operation should not interfere with communication and sensing op-

erations, while being at the same time resilient to network failures, node failures or link

failures. A frequent scenario is in fact the failure detection and its analysis: it may be

indispensable to understand the causes of node failures, especially to distinguish the

simple cases of battery exhaustion from environmental factors, development bugs or

tampering attempts.

For those reasons, a simple network management protocol would be a fundamental tool

for deployers and network administrators. Such tool would let the network administra-

tor or the application check the status and health of each single mote in the network.

The creation of a specific protocol can be a solution, but it would increase the size

of the operating system and add further complexity. The idea is to exploit the same

service ideated in 3.3.3 and log into the secondary memory both sensor data and log

information. In this way, the single file containing the node health summary can be

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 65

transferred to other nodes via the existing bulk transfer layer in Rime, thus without the

need of additional protocols. Further studies, however, should be made in order to en-

sure the energy efficienc of such solution. The energy issue in the logging application

will be analyzed in the next chapters.

3.3.5 Deployment

As mentioned in Chapter 1, the lack of installation ease, the significant manpower

involved in the deployment and the dependance on the individual skills of deployers

were the biggest problems reported in a survey of WSN by Römer [14].

These results show the need of a better deployment methodology for WSNs despite

many deployment support modules have already been proposed. However, they are

either too complex and costly or they are mainly used for debugging rather than for the

real deployment issues. The operation of placing the nodes is the most important and

challenging operation in sensor networks, because a wrong deployment can vanify all

the efforts put into research and development.

Typical concerns of deployers are the conncetivity range, the connection quality, the

sensor coverage and the redundancy level of the deployed system. The most important

thing is that all those information should be provided at the time of the deployment,

not before nor after.

Simulators and testbeds are excellent tools, but often too simple compared to real-world

systems. Simulators have too simple models that do not keep into account physical

parameters and radio issues. Testbeds are running in a different environment and thus

nodes may consume additional energy, bandwidth or cause additional traffic or not even

work after the real deployment. Debugging support is very useful once the network is

deployed, but this usually implies that if an error is present the whole deployment phase

must be done again.

A real-time deployment support that would validate the deployment while placing the

motes, would speed-up the whole deployment phase. In this way, most of the errors

revealed in the debugging phase, could thus be avoided in the deployment phase. The

proposed deployment support would provide real-time connectivity range, connection

quality, redundancy level of the deployed nodes to the deployer, making installations

easier and faster, and involving less manpower.

After the deployment phase, to determine relative or absolute location of a sensor is a

well-known issue in wireless sensor networks. The Global Positioning System (GPS)

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 66

solution is the most accurate, although GPS is sometimes difficult to use, expensive and

powerhungry. Mao [66] discusses the most used localization and measurement tech-

niques such as angle-of-arrival (AOA), received signal strength-based distance (RSS)

and time difference-of-arrival (TDOA). Many other techniques have been studied for

localization of sensors [67], but it must be remarked that localization is not an issue

that all WSN application requires, because its introduction causes inevitably more en-

ergy consumption, which in the case of Global Positioning System can be in the order

of dozens of mA. Given the complexity and the huge amount of research currently

focused on sensor localization, this Master Thesis will not address it directly.

3.4 Consequences of the sub-layer introduction

Akyildiz et al. [9] divide sensor networks protocol stack into three planes: Commu-

nication Plane, Coordination Plane and Management Plane . Communication plane

enables the information exchange among the nodes of the network, coordination plane

decides how the node acts on the received data and management plane is responsible

for monitoring and controlling a sensor node so that it operates properly.

The management plane is responsible for monitoring and controlling a sensor node,

so that it operates properly, and to provide the information needed by the coordination

layer to make decisions. Three are the main areas in which the management plane is

involved as represented in figure 3.9.

The power management plane controls how a sensor node uses its power and informs

the coordination plane that, accordingly, may decide to switch off some components

after receiving a specific routing message. If the battery level is low and the lifetime

of the system is estimated to be limitate, the node may ask its neighbors to modify

the routing accordingly. Alternatively it may switch off some components like LEDs,

radio or sensors.

The mobility management plane, as the name suggests, tries to keep tracks of the neigh-

bor sensor nodes. It detects and registers the movement of sensor nodes and keeps the

routing table updated. In this way it keeps updated the status of the network so that the

coordination plane can make proper decisions.

The fault management plane refers to the detection and resolution of node problems.

For example, when the sensitivity of sensing unit or the accuracy of the actuation unit

degrades, fault management plane informs the coordination plane about this situation.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 67

Figure 3.9: WSN protocol stack. Taken from Akyildiz et al. [9].

Fault detection can also be applied to network issues like connectivity or quality of

service, for example to indicate that a route is often disrupted and that the quality of

service provided is lower than the expected one.

The communication plane receives from the coordination plane commands about the

decision of how the node should behave and according to that information provides the

link relation between nodes by using communication protocols. Basically the commu-

nication plane constructs the physical channels and handles MAC and routing issues,

as well as the transport of packets from one node to another. Roughly, it can be com-

pared to the four lower layers of the OSI stack.

The coordination plane determines how a node behaves according to the data received

from communication plane and management plane. The coordination plane shoud

make decisions based on the sensed values and the status of the node and the network.

For example, components may be shutted off or routing schemes changed when the

battery is low and recovery mechanisms may be actuated whenever a fault is detected.

The challenges described in the previous section motivated the introduction of a sup-

port sub-layer that would provide services like battery lifetime estimation, logging or

deployment utilities. These features would improve the robustness of the nodes to

the dynamic environment and help in achieving the self-configuring, self-healing and

adaptive properties of wireless sensor networks.

CHAPTER 3. WIRELESS SENSOR NETWORKS APPLICATION LAYER 68

Thinking to the protocol stack described by Akyildiz et al. the features that the support

sub-layer would provide correspond to the management plane functions. In fact the

management plane is responsible for monitoring and controlling a sensor node so that

it operates properly, and to provide the information needed by the coordination layer to

make decisions (battery status, operative information, channel quality, etc.). Also fault

management would be provided by the topology management support.

In this way, the application design would be limited to the coordination plane and

would result in less code size and complexity, given that the communication plane is

entirely managed by Rime and Chameleon in the Contiki operating system.

Chapter 4

Design and implementation

In this chapter I describe the design and implementation of an application support sub-

layer for wireless sensor networks.

The top view of the sub-layer is illustrated in Section 4.1. The design is modular, and

each module implements a specific functionality. Thanks to modularity, the imple-

mentations are kept separate, and additional modules can be added in the future. The

choice of the modules to be implemented follows the remarks and observations illus-

trated in Chapter 3. Each module is explained in detail in the next sections, including

a full description of the problems encountered during the design that influenced the

design choices. The implementation is Contiki-based and it has been tested on either

the Tmote Sky or the MSB-430 platforms. Details of Contiki and the platforms used

can be found in Chapter 2.

4.1 Sub-layer design

The challenges and problems of sensor network applications, described in Section 3.3,

highlighted the lack and need of several services. All these services are collected into

the application support sub-layer as different modules. Each module can be designed,

implemented and loaded separately, in this way the design is not binded and additional

modules can be added in the future.

The support sub-layer has been divided into two main logical parts, following the di-

vision according to Akyildiz et al. detailed in Section 3.1. The Task assignment and

69

CHAPTER 4. DESIGN AND IMPLEMENTATION 70

Figure 4.1: Design of my application support sub-layer.

Data Advertisement Protocol was not implemented because of the scarce usage of user

interests dissemination in sensor networks nowadays. The logical division into two

main blocks does not affects the modules, and there are no boundaries nor physical

distinction between the two parts.

Figure 4.1 shows the design of the application support sub-layer. The sub-layer sits on

top of Contiki and its Rime protocol stack, and it is directly accessed by the applica-

tions. The logical division is made between the sensor management functions and data

and query issues. Following the Akyildiz notation, the sub-layer is divided into Sensor

Query Language and Data Dissemination Protocol (SQDDP) and Sensor Management

Protocol (SMP). Each of these two blocks contains modules, and every module imple-

ments a single feature.

The SQDDP is composed by a sensor data query and dissemination module. Following

the remarks of Section 3.3.3, the module provides the application a simple way to per-

form snapshots, historical and continuous queries with no additional work. The sensor

data retrieved is stored into the secondary memory, and it is thus also persistent in case

the node fails and reboots. Since every sensed activity is treated as a single file, it is

CHAPTER 4. DESIGN AND IMPLEMENTATION 71

possible to transfer both past and current information remotely using the bulk transfer

module in Rime. In this way, sensed data can be disseminated easily through the sensor

network. SQDDP can also be enriched with many other features that I did not address

during this work. As an example, a DataBase Management System (DBMS) can be

implemented to enable local and remote storage, for example on secure and energy-

unlimited nodes.

Most of the modules that I implemented in this Thesis belong to the Sensor Manage-

ment Protocol (SMP). A deployment support module has been developed in order to

minimize the time, the manpower, and the cost of deployment following the remarks

made in Section 3.3.5. Outdoor deployment optimizations have been designed for a

better robustness to thermal excursion and weather effects. Robustness and reliability

are also increased by autoconfiguration schemes like the rapid channel quality assess-

ment.

A battery lifetime estimation module has been implemented in order to provide the

application with the estimated residual lifetime of the system given the current con-

sumption. The application can use this information to change routing schemes, switch

off components to save energy, or simply raise alarms to the user.

Node monitoring support is also provided through a logging utility for debugging and

topology monitoring that follows the implementation of the sensor data logging in the

SQDDP. The logged data is persistent: in this way it will be easier to understand the

faults, especially to distinguish the cases of battery exhaustion from environmental fac-

tors, development bugs or tampering attempts. Alternatively, the network health status

can be monitored during normal operations, accessing the node remotely and transfer-

ring the logged data via the bulk transfer module in Rime. This module can be easily

extended with a keepalive protocol to monitor if the node has been removed or tam-

pered.

The modularity of the design allows any future extension and revision of modules:

new solutions can be studied in order to provide an always better support to the sensor

network applications.

CHAPTER 4. DESIGN AND IMPLEMENTATION 72

4.2 The online battery monitoring

Energy consumption is one of the key considerations in the design of an embedded

system or sensor network node. Researchers and designers are trying to maximize the

energy delivered by the battery and consequently the battery lifetime.

If the application can know the residual battery lifetime of the system, it can for exam-

ple modify routing schemes accordingly, like in SCAR [61], or switch off components

in order to save more energy. An application may have to monitor the battery lifetime

status before taking a critical decision. All kind of applications would in any case def-

initely benefit from such indicator, if available, reliable and easy to retrieve.

Stochastic and complex models like Partial Differential Equations [68, 65] have been

proposed for an accurate estimation of the battery lifetime based on the properties of

the electro-chemical cell. Although very accurate, those models may be inappropriate

for constrained wireless devices, with limited computational capabilities and energy

requirements.

For these reasons, in today’s real world deployments, simulators and testbeds are used

to characterize energy efficiency and battery lifetime before deployment. This method-

ology, however, introduces the concept of static or controlled conditions that does not

fit in the WSN world. Variability is in fact an intrinsic characteristics of sensor net-

works and simulators are unable to give the developers the complete scenario that their

application should deal with.

A model for on-line battery lifetime estimation is thus needed, and should rely on few

input parameters simple to compute, as also explained by Behrens [7]. The implemen-

tation of such a model is extremely challenging, not only because it is difficult to find

the right compromise between precision of the estimation and costs, but also because

of the intrinsic nature of batteries that are hard to model and their behavior difficult to

predict as shown in Section 3.3.2. The next part of the section will illustrate the design

of a computationally simple model for an online battery lifetime estimator, based on

the battery voltage and temperature.

4.2.1 Battery voltage

The electrical potential difference across the terminals of a battery is known as ter-

minal voltage or open-circuit voltage, it is measured in volts, and corresponds to the

CHAPTER 4. DESIGN AND IMPLEMENTATION 73

Figure 4.2: Different voltage references can give different discharging curves for the

battery voltage. A good setting of the voltage reference in the ADC of the micropro-

cessor is indispensable for a correct estimation.

electromotive force of the battery.

An ideal battery has negligible internal resistance, so it would maintain a constant

terminal voltage until exhausted and then drop to zero; in real world batteries, how-

ever, the internal resistance will increase as it is discharged, and the voltage will also

decrease as the cell is discharged. In particular, an USB powered mote will have a

constant voltage of 3 V, while a node running on battery will have a voltage dependent

on the battery residual capacity. For a better comprehension of what the battery voltage

is, a nice analogy is presented by Trace Engineering [69], that simplifies the compre-

hension.

Battery voltage can be retrieved in the Tmote Sky platform and in many sensor network

platforms such as the ESB [26] through the internal ADC of the MSP430. Details on

how to compute properly the value from the internal ADC have been described in Sec-

tion 2.4.4 and will not be recalled. However, it is remarkable how important is the

selection of the correct voltage reference for the ADC.

Figure 4.2 shows the different discharge curves computed based on different voltage

references. I retrieved the values comparing the reading of a generated voltage value

with the voltmeter (with precision 1 mV) and the ADC sensor readings with voltage

CHAPTER 4. DESIGN AND IMPLEMENTATION 74

references of 1.5 and 2.5 V. From the figure it can be seen that it is necessary to use

two different voltage reference values in order to cover the entire voltage range of a

battery. If the nominal voltage of the battery is 3 V, the battery will provide more

than 3 V when at full charge and less than 1.8V when totally discharged. For voltage

values higher than 3 V, the 1.5V reference gives a constant value of 3, while the 2.5

V reference gives the correct reading. For voltage values lower than 2.6 V, however,

the 2.5 V reference is not suitable anymore, and the 1.5V voltage reference must be

used to ensure correctness. It is fundamental also to remember that in Contiki, if the

voltage reference of the battery voltage sensor is changed, it is also changed the voltage

reference of light sensors and similar. Thus this operation should be handled with care.

4.2.2 Model creation and implementation

The meticulous data collection shown in Section 3.3.2 has shown the issues and chal-

lenges behind the battery lifetime estimation. The design phase consists in finding an

appropriate model that would deal with all these challenges and that would represent a

right compromise between reliability and energy consumption. The target is in fact to

design a both reliable and computationally light battery estimator.

The module is designed for non-rechargeable batteries, but the assumptions and proce-

dures applies in the same way to rechargeable batteries, just with different curves and

mathematical relationships.

The design is optimized for the Sentilla Tmote Sky platform running humidity and

temperature sensors. According to the Tmote Sky and CC2420 manuals [22, 51], both

the Tmote Sky platform and the CC2420 radio chip are supposed to be operative when

powered with a voltage between 2.1 and 3.6 V. However, the SHT11 sensor [50] carried

in the platform limits the minimum voltage to 2.4 V.

Experimental tests confirmed that each component worked perfectly up to the thresh-

old declared in their manual. Components worked down to 15 mV below the declared

threshold: cpu and radio can work for voltage down to 1.95 V and the SHT11 sensor

gives meaningful values down to 2.25 V. Below the 2.25 V threshold the SHT11 tem-

perature and humidity sensor samples become wrong, following the pattern shown in

Figure 4.3. It is very important to monitor the battery voltage to be able to distinguish

between good and bad values: given the pattern followed by the temperature sensor,

a fake alarm would be raised in fire detection systems when the voltage threshold is

exceeded. The MSP430 processor starts slowing down its operations exponentially be-

CHAPTER 4. DESIGN AND IMPLEMENTATION 75

Figure 4.3: Data retrieved from the SHT11 sensors when used below their operative

threshold.

low its operative threshold of 2.1 V, and thus normal operations take longer time.

Given the following remarks, the Tmote Sky platform stops its operativity below the

cut-off voltage threshold VMIN , computed as:

VMIN = max(thresholdsensors, thresholdradio, thresholdmicroprocessor) = 2.4V

For this reason, the on-line battery estimator module will be adjusted in order to pro-

vide a battery lifetime estimation with respect to the cut-off voltage of 2.4 volts.

This implementation does not subtract the transient time described in Section 3.3.2

directly from the voltage value retrieved from the sensor. This choice is mainly due

to the long life of sensor networks: waiting a couple of hours is a good compromise

compared to higher computations and thus higher energy consumption. However, a

preliminary relationship of transient time has been found based on the variance of the

voltage values, and may be subtracted from the voltage value in the next releases of the

module, in order to allow a quick estimation even once the battery has been inserted.

The relationship is exponential and it is shown in Figure 4.4.

The mathematical function

A model for the battery estimation has been created in order to obtain the residual

amount of current drain, given the current battery voltage and temperature. The curves

fitted by the model represent the residual amount of current drain in function of the

temperature and the voltage, and are shown in Figure 4.5. These kind of curves can be

CHAPTER 4. DESIGN AND IMPLEMENTATION 76

Figure 4.4: Variance of the battery voltage of a battery just plugged in into a sensor

node. The voltage needs a couple of hours (transient time) to stabilize, because the

initial voltage retrieved is higher than the acutal one.

modeled as sigmoid functions.

Sigmoids have a small progession in the beginning and accelerates over time until

they stabilizes on the final value. In other words, a sigmoid curve is produced by a

mathematical function having an ”S” shape. The general formula is

y(x) = a

1 + eb+c∗x

Given the temperature dependency, the residual amount of current drain is given by

voltage and temperature:
y(v, t) = a(t)
1 + eb(t)+c(t)∗v

It is not easy to find coefficients for which the curves precisely match. This is because

the experimental data is affected by some spikes, and also due to the fact that we try to

keep a linear relationship in the coefficients a, b and c with respect to the temperature.

The best values that seems to fit the curves are:

a(t) = 156770 ∗ t + 7E06

b(t) = 0, 1496 ∗ t + 26, 341

c(t) = −5E−05 ∗ t− 0, 0099

CHAPTER 4. DESIGN AND IMPLEMENTATION 77

Figure 4.5: Relationship between voltage, temperature, and residual current draw avail-

able from the battery. Data is taken experimentally, and it is used to construct the

battery model for battery lifetime estimation module.

It must be remarked that using advanced tools, polynomial functions can be found, but

this would not lead to a correct solution from a conceptual point of view, since we are

interested in a global solution, and available data from the experiments is only in the

range -15◦C - +25◦C.

Another option is to use a special type of sigmoid function called the Gompertz curve

or Gompertz function, named after Benjamin Gompertz. It is a type of mathematical

model for a time series, where growth is slowest at the start and at the end. The generic

function is:

y(t) = aeb∗ec(x)

Coefficient a is the upper asymptote, c is the growth rate, and e is Euler’s Number.

Implementation

Once the approximate residual current drain is known through the model, it is pos-

sible to relate it to the actual current draw of the system computed using the energy

estimation primitives (Energest) available from Contiki.

Energest gives the time in which each node component is turned on. In particular, the

time in which cpu was busy, the system was in low-power mode time, and in which

leds and radio were turned on was retrieved. I related each of these values to the mA

draw retrievable in the Contiki folder examples/energest-demo/src/Demo.java:

CHAPTER 4. DESIGN AND IMPLEMENTATION 78

• LEDS = 4.6 mA;

• SENSORS = 6.0 mA;

• TRANSMIT = 17.7 mA;

• LISTEN = 20.0 mA;

• LPM = 0.0545 mA;

• CPU = 1.8 mA.

Since each second corresponds to 4096 ticks, it is possible to compute the global cur-

rent draw of the system for each second as: Etot =
∑

ticksmodule∗mAmodule

4096∗tsec
, where tsec

is the number of seconds elapsed for every energest data retrieval. For example, with

all the components (radio, LEDs, etc.) switched on, the average current draw is around

34 mA, while, with the components switched off, it is only of 50 uA. These values

represent the consumption of the node for one second.

Given the residual amount of current draw (in mA) retrieved from the model, it is

immediate to compute the residual lifetime dividing the residual mA amount with the

current draw of the system. Residual mA are derived from experiments that I carried

out at different temperatures simply reverting the cumulated current draw over time.

In order to ensure a better precision, the Coffee file system has been used to store the

average current consumption of the system at regular intervals. In this way, even an

intermittent node rebooted after a failure already knows its average consumption and

can give a reliable battery lifetime estimation.

4.3 Logging module

Section 3.3.3 highlighted the benefits that applications would have if enabled to per-

form continuous and historical queries with the same easiness as snapshot queries.

WSN applications often have to take decisions based on sensed parameters ranging

from temperature to signal radio strength. The sensed parameters may lead to wrong

decisions if based only on the current values. A broader view of the pattern of a pa-

rameter is often needed and very useful to give more precision and better reliability

and robustness to the whole system. Moreover, if the pattern is known to be cyclic in

CHAPTER 4. DESIGN AND IMPLEMENTATION 79

a certain period of time, future values can be even predicted through the knowledge of

the values collected in the past.

The SQDDP logical layer provides a module that logs sensor data into the secondary

memory, in order to enable all the three types of queries illustrated in Section 3.1.3.

Such logging utility would bring enhancements for solutions against the variability

of sensed parameters. SMP logical layer provides node monitoring through logged

information. In this way, problems like topology management and fault detection can

be improved, as illustrated in Section 3.3.4.

For each parameter of interest (temperature, humidity, signal strength, etc.), a log file

is created in the secondary memory. The aim is threefolded. On one hand for each

parameter the three types of query would be available, and thus it would be possible

to skim through the current and past values. On the other hand, remote network mon-

itoring is possible via the bulk tranfer primitive in Rime, thus enabling applications

or remote administrators to check the health and the status of the network. Moreover,

this module can be also exploited to understand the cause of failures, analyzing the log

data, since it is persistent to node reboot.

Data is logged in a special array form, which is fully configurable by the application,

including the size. In this way, the application knows exactly how much space in

memory will be used, and how much space is still will available. The log structure and

design is detailed in the next subsection.

4.3.1 Sensor data log structure

Sensor data is stored in a special array form, fully configurable by the applications. The

array is conceptually divided into two main logical blocks, called STEP1 and STEP2,

shown in Figure 4.6. The two blocks contain the most recent and less-recent sensor

data. The application can decide to enable or disable the log of recent or less-recent

data by configuring the dimension of the two blocks separately. STEP1 refers to the

short-term sensed data, while STEP2 refers to the past data. This choice is made be-

cause the application can have different reaction policies: a reactive application will

analyze only the recent data, while a more reliable and slow application would keep

into account also the old data to give a more conservative decision, given the unreliable

nature of sensed data. Since the dimension is configurable, the application can know

how much space of the file system will be used, and consequently monitor the remain-

ing space. The two blocks can be seen as arrays of contiguous cells, and belongs in this

preliminary implementation to the same file. The file is written using the Coffee write

CHAPTER 4. DESIGN AND IMPLEMENTATION 80

Figure 4.6: Log file format.

command, but further optimization can be made using the append function instead, as

studied in Section 5.2. Each cell of the two arrays contains the sensed information

relative to a specific point in time.

For a better explanation and comprehension of how the log file works, it is useful to

see an application example. Supposing to be monitoring the temperature of a room, the

application assignes a name to the log file, and select sampling rate, amount of samples,

and dimensions of the STEP1 and STEP2 blocks. Let’s suppose that the values are

configured in this way: sampling rate = 1 minute, samples amount = 6, STEP1 = 60

and STEP2 = 48. 60 and 48 corresponds to N and M in the figure.

The amount of samples and the sampling rate determines how many data are taken from

sensors and at which speed. In this example, 6 values are taken regularly every minute,

so one every 10 seconds. This means that, after one minute, 6 values are available

from the sensors. Those values will be averaged and stored into a cell of the STEP1

block. Thus, if the STEP1 array dimension has been configured to 60, it will contain

the summary of the temperature retrieved in the last 60 minutes. When the STEP1

CHAPTER 4. DESIGN AND IMPLEMENTATION 81

array is filled up, the oldest cell will be erased in favour of a new incoming value. At

the same time, the 60 cells will be averaged and stored in a cell of the STEP2 array. In

this way, the STEP2 array will contain the information of the last 48 hours. This means

that the application can monitor both recent and old data, and can decide autonomously

how to manage recent and old data.

Given the design of the module, the application can read directly the sensed informa-

tion of a precise interval of time. In fact, it will be possible to select specifically the

information of the last 1, 2, ... , 60 minutes, as well as the temperature information of

the last 1, 2, ... , 48 hours.

When averaging the values into the STEP1 and STEP2, also the variance is computed

and stored together with the mean value of the sensed data. This may be really useful

to understand whether the sensor information is constant or unstable, and can be used

to verify the calibration of the sensor. Very unstable values may imply that the sensor

is miscalibrated if the environment is not changing.

The ’+’ field shown in Figure 4.6 is optional, and corresponds to the sum of all the

values older than the ones contained in the STEP2 block. It was designed essentially

to avoid data loss. In other words, the oldest STEP2 cell, before being updated with a

new value, it will be summed to the + field. Instead of the real average and variance,

the cell will contain the sum of the previous ones.

The module has been implemented exploiting the Coffee file system and its micro log

feature. It has been successfully tested into the Tmote Sky platform for a simulation

retrieving the environmental noise in a room for more than three weeks.

The benefits introduced by the logging module are indisputable. However, the intro-

duction of secondary memory storage implies a bigger energy consumption. To under-

stand if the amount of energy introduced by this module is acceptable, a thoroughful

evaluation is made in Chapter 5.

4.4 Deployment support module

The deployment is probably one of the most delicate and non trivial phases in the life-

cycle of wireless sensor networks. The limited resources of the nodes, the distributed

nature of the algorithms, the interaction with the environment, and the large number of

nodes involved lead to difficult on-time access to the data and thus both debugging and

deployment are very hard.

CHAPTER 4. DESIGN AND IMPLEMENTATION 82

Errors in the deployment phase must be avoided, because they may have permanent

harmful effects on the network, both from the connectivity point of view and from the

sensor values retrieved. A wrong deployment may waste all the prior work made in the

application development. Coverage, connectivity and correctness must be ensured and

a wide deployment experience and knowledge of sensors may not be enough without a

good deployment support. A good access to the state of the nodes is fundamental for

deployment as it is for testing and debugging, but limited because of the hardware and

software constraint capabilities of the nodes, as mentioned by Liu et al. [70].

The high variety of conditions mixed to the sacrificed hardware and software compo-

nents is the cause of the challenge. Langendoen et al. [71] even report that debugging

LEDs were switched off in favor of energy-efficiency during the first deployment ex-

periments. This means that even a good deployment support is useless if it requires

additional costs or it introduces heavy energy constraints.

Given these observations, it is clear that the deployment phase should be simplified

and the time required for the various stages of deployment should be shortened. De-

ployment support is needed to guide the user in the deployment phase, to verify the

functionality of the system at the time of the deployment and to lower the risk of early

failures.

4.4.1 State of the art in sensor networks deployment

In order to support the development and test of sensor-network applications various

approaches have been proposed.

Simulators are widely used today before deployment, but they are definitely not enough

because of their simple models and because they do not keep into account the complex

physical phenomena that appear in real deployments. Radio signal, obstacles presence,

weather effects, and environmental effects must be analyzed on-time while deploying,

using constrained devices with limited output capabilities.

If for normal development of WSN applications or low-layers functionalities simulators

are excellent tools, they cannot be considered as good for deployment. The required

level of environmental abstraction for the simulator is too high, and the simulated sce-

nario is too simple and thus not enough to discover the challenges and problems that

may arise in the deployment phase.

CHAPTER 4. DESIGN AND IMPLEMENTATION 83

Emulation testbeds with real devices have been built for data collection of sensor nodes

and to overcome the above problems. Testbeds give much better results than simulators

because of the use of real devices and communication channels. However, their results

cannot be directly mapped to real-world deployments. Since the nodes will be de-

ployed in different environments from the emulated one, the physical environment will

interfere differently, causing different transmission ranges, different battery durations,

and thus causing problems to the deployers. The gap between emulator or simulator

and the real deployment is a common problem nowadays, and it is also highlighted by

Beutel et al. [72] and Stankovic et al. [70].

Common problems found after deployments that did not occur in simulation or emula-

tion are for example connectivity issues, as reported by Srinivasan and Tolle [73, 74]

or battery exhaustion due to a wrong design. Srinivasan et al. [73] discovered that

their multi-hop networks deteriorated over time and the result was a low packet deliv-

ery rate. Tolle et al. [74] reported that a large part of the network failed to form the

routing topology. Srinivasan et al. [73] also mentioned that reduced duration of the

batteries and a consequent decease of the motes was reported. These are all examples

of problems reported despite the prior use of simulators and testbeds.

Other common problems that highlight the gap between simulators or emulators and

real deployments have been reported by Szewczyk et al. [75], and Dutta et al. [76],

where reduced transmission ranges, dirty sensors, and short lifetime of nodes were

affecting the nodes, problems that were not expected after simulation.

These results show that both simulator and testbeds are too restrictive, differ too much

from the real deployments, and do not provide the expected results. As a consequence,

tedious problems may arise.

In response to these needs, many alternative deployment tools were proposed, like the

Sympathy debugging tool [77], Deployment Support Network (DSN) [72], Power [78],

SNMS [79], SeeDTV [70], and Moteview [80]. All these proposals are detailed and

analyzed in Chapter 6, and it is possible to understand that deployment support toolkits

have evoluted from simulators to complete tools for deployment support. It is fully

possible nowadays to test a deployed network and understand whether it presents fail-

ures or possible problems. This is the target of most of the approaches that have been

just described so far.

However, one step is still missing: to tighten the limit between reliable deployment

CHAPTER 4. DESIGN AND IMPLEMENTATION 84

validation and time and costs of the deployment. A support tool that would both vali-

date the deployment and at the same time help the user to localize the right position of

the motes in the deployment would speed up the deployment process while mantaining

reliability and reduce the manpower involved in the deployment. At the same time it

would not increase the costs by adding more supporting tools.

4.4.2 Towards quickly deployable sensor networks

Wireless sensor networks often support networks used in emergency situations or de-

fense applications, which require a quick deployment. This need is constantly more

and more rooted today and often the evaluation technique for measuring the goodness

of the deployment is the time needed for the deployment phase, as made by Huang et

al. [81].

However, the faster the deployment is, the higher will be the probability of having an

imprecise and error-prone topology. A meticulous validation is needed to ensure re-

liability and to avoid imprecisions and errors. However, it increases enormously the

time and the costs of deployment, adding new devices to the motes as in [70, 82], and

requiring a considerable amount of manpower. This controvert the properties of sensor

networks, because the cost is an important metric, as well as the power consumed by

the additional hardware introduced.

For these reason a new approach is needed. The deployment support module that I

propose aims to reduce the time of deployment with a real-time driving mechanism

that guides the deployer while placing the motes like suggested from real-world ex-

periments made by Finne et al. [83], thus speeding-up the deployment process while

targeting at the same time the design of a reliable and robust network. Driving the

deployer consists in giving real-time information on connectivity, signal strength, and

redundancy level, so that it is easier to quickly identify where the nodes should be

placed in terms of connectivity with the rest of the network. In this way, connectivity,

routing schemes, and device problems will be already proven to be working, and a new

revision of the deployment will very likely be unnecessary.

The module gives only essential information to the deployer, in this way the module

becomes lightweight. Moreover, it is supposed to be used for really short periods of

time, and thus the energy consumption is low, satisfying the main constraint of wireless

sensor networks. Several validation and checks can be moved before the deployment

phase, like the check of memory devices and peripherals, or the routing schemes vali-

CHAPTER 4. DESIGN AND IMPLEMENTATION 85

dation.

It must be remarked that my approach is not replacing the validation or debug of the

network. However, it will be very likely that the network has already been deployed

with good criteria. If the reliability and robustness level of the method are confirmed,

it can be considered as both fast and cheap support module for deployment.

4.4.3 Proposed validation process

Analyzing the existing approaches described in Section 4.4.1, and considering the re-

marks on deployment quality measures in Surveillance Wireless Sensor Networks by

Onur et al. [84, 85], I selected the validation steps for my real-time deployment support

module. The main steps that should be taken into account for real-time sensor networks

deployment validation are:

• Connectivity check;

• Coverage validation;

• Redundancy check;

• Basic device check;

• Node autoconfiguration and test.

Connectivity. Connectivity with the rest of the network should obviously be ensured.

This means that every node should reach directly or via multi-hop the first node that

has been deployed in the network. Moreover, the strength of the signal should be

enough to guarantee a reliable communication also to external events such as changing

weather conditions and temperature, noisy devices, microwaves effect, moving people,

etc. Weather and temperature effects on radio signal strength in outdoor deployment

will be analyzed in detail in the next subsection, showing also experimental results.

Depending on the kind of deployed application also connectivity to external services

should be ensured and validated.

Summarizing, connectivity validation process implies:

• Check connection with the rest of network via simple ping tests;

• Check the strength of the radio signal;

CHAPTER 4. DESIGN AND IMPLEMENTATION 86

• Validate the radio received signal strength taking into account also external ef-

fects like temperature, people and weather;

• Check connectivity to external services.

Coverage. Studying the coverage means to determine how well the sensing field is

monitored or tracked by sensors. It represents a very difficult task, because it is neces-

sary to collect the perimeter coverage (also called sensing range) of each sensor before

the level of coverage of an area can be determined. This is an assumption which does

not always apply. Coverage depends also on the deployment method as highlighted

by Huang [81]: sensors may be randomly deployed, and this introduces another chal-

lenge. Furthermore, sensor failure rate may be used to compute the coverage level, as

well as application desired properties. This gives too many constraints, especially the

fact that each sensor should be aware of its geographic location and sensing radius.

The coverage issue has been widely studied and many probabilistic apporaches have

been proposed to give the minimal number of nodes needed to obtain a continuity of

coverage, thus avoiding breach paths. Another approach is to return the number of sen-

sors that cover the area given a certain location. In case nodes are mobile, the coverage

issue becomes even harder. This problem has been studied by Liu et al. [86].

Given these challenges, and the probabilistic approach they are solved with, it is very

expensive from a computational point of view, to compute the coverage while deploy-

ing, as well as difficult and hard to perform in real-time. Moreover, coverage may not

be a key issue in many cases, and lots of the assumptions may not be verified. For these

reasons, if a coverage study has to be done, it should be done in a separate phase, with

the help of simulating tools, like SensDep [87], a software design tool that incorporates

several solution strategies to optimize sensor networks cost and coverage. Thus, the in-

field real-time driving support should not deal with the coverage issue.

Redundancy. Fault tolerance is a very important property of sensor networks, and

most of deployed networks present a certain degree of redundancy, to ensure connec-

tivity when failures occur. In the deployment phase, it is possible to understand how

many nodes are in the sensing range of a mote, and thus exploitable in case one route

breaks. In other words a mote should know the number of nodes in the network to

which it is connected. It may be important to ensure a greater fault tolerance in the

CHAPTER 4. DESIGN AND IMPLEMENTATION 87

backbone of the network, or wherever a denser number of nodes is deployed. Al-

ternatively, it could be possible to study the radio traffic pattern and detect the most

congested area, giving hints to the deployer of where nodes should be added.

Basic device check. Validate the hardware for each WSN node is important as also

explained by Liu [70]. In order to accomplish this task, a complete check-out of the

node after deployment including peripherals, memory and register contents tests is

needed. Sensor capabilities should be tested through intensive querying under different

conditions to verify that sensors are enabled, their driver functional, and their response

data meaningful. Basic checks also include the validity of time-synchronization, if

present.

However, all the accurate device check phase just described, can be executed before

deployment, since it is very time consuming. Device check includes sensor calibration

where applicable, for example using self-calibration techniques like Calibree [88].

Some checks can however be made in the real-time deployment phase, for example the

impact of environmental conditions on the hardware, or the battery level.

Node autoconfiguration and tests Once the node has been deployed, it should be able

to self-configure on the best possible way. An important example is channel autocon-

figuration. The node may sense the different channels and analyze traffic, interference

and noise, and make a channel quality estimation after which it can select the best

channel suitable for communication. Moreover, when energy issues allows that, appli-

cation can self-adjust the transmission power to ensure a more robust communication.

Channel quality assessment should be rapid and computationally light. I present an

innovative technique based on the LQI variance that will be illutrated in Section 4.4.6.

Battery charge level and current consumption can be tested to avoid failures after de-

ployment. To add a more robust check, it is possible to see whether the sensors are

properly working also in the deployed scenario. It can simply be done by sampling

multiple times a value and analyzing the variance: if the variance is unexpectedly too

high, it may be due to a misfunctioning sensor or wrong calibration.

Finally it can be checked whether environmental conditions affect the hardware. For

example if it is known that components work only within a certain range of values (for

example temperature), if nodes are equipped with the necessary sensors, it can be ver-

ified if the constraints are satisfied.

CHAPTER 4. DESIGN AND IMPLEMENTATION 88

Section 4.4.5 will describe the implementation of the real-time deployment support

module. Its design will contain the validation steps that have just been described. The

next section describes how the deployment of sensor networks is a really non-trivial

task, because the behavior of nodes is unpredictable since they can also be affected by

temperature, weather conditions and all phenomena that affects the radio performance.

4.4.4 Unpredictability of outdoor deployments

Performance of outdoor sensor networks has shown to be both unreliable and unpre-

dictable by Sun et al. [89]. Significant variations in packet delivery, and anomalies

in sensor readings are not uncommon in outdoor deployments. Several experiences

show that sensor networks are greatly affected by the environment in which they are

deployed. Many factors affect the connectivity of nodes according to Holland [90],

such as the radio antenna pattern, the presence of obstacles between motes like walls

or trees, moving people, and even weather conditions.

However, sensor networks are expected to work on every condition. All the potential

sources of problems for deployed nodes should be carefully studied, and solutions

should be designed in order to ensure a better robustness of the deployment.

Anastasi et al. [91] investigated the impact of atmospheric conditions on the perfor-

mance of outdoor sensor nodes. The results they obtained lead to the conclusion that

weather effects, and more specifically fog and rain, may have a severe impact on the

transmission range of sensor nodes. They reported a high difference in the maximum

range between two MICA2 nodes: 55 meters with normal weather conditions versus

10 meters with foggy and rainy conditions. Weather effects have been also cited by

Sun [89] as the cause of connectivity problems.

A recent paper by Bannister et al. [92] highlights that also temperature plays an impor-

tant role in connectivity, and they show how connectivity can be affected by thermal

excursion.

In order to quantify all the possible effects of the environment on the radio connec-

tivity and signal strength, I carried out several outdoor deployments. I describe my

experimental results from these deployments in Section 5.3.1. These experiences and

remarks are very important to ensure a correct deployment phase. Moreover, the de-

ployment experiences can be useful to prevent failures and increase the robustness in

deployed wireless sensor networks.

CHAPTER 4. DESIGN AND IMPLEMENTATION 89

4.4.5 Design of the deployment support module

The deployment module has been designed on the Tmote Sky platform, and thus ex-

ploting the available hardware, so temperature and battery voltage sensors, a user but-

ton and three LEDs. The target is to enable a fast and reliable deployment phase while

keeping an energy-efficient scheme. The design of the module follows the validation

process described in subsection 4.4.3.

The nodes are assumed to be deployed sequentially. The first node is assumed to be

the sink, or the core of the network, and every node deployed from now on will check

the connectivity with it. To configure a node as the sink one a triple-click on the user

button is needed.

From each node that should be deployed after the first one, 4 views are available to the

deployer through the LEDs: signal strength, redundancy level, connectivity status and

battery status. The deployer can change view by clicking on the user button once.

In order to show these informations, the node must communicate with the rest of the

network, starting a ping process within its radio range. This exchange of packets would

obviously increase the energy consumption. For this reason, the ping process can be

switched on and off only for the time of deployment, so to not overload the network.

Moreover, placing a mote will not require many minutes, so the energy consumption

due to the exchange of packets is limited, given that the process is correctly stopped.

To switch on or off the ping process a double click on the user button is needed.

The ping process consists in sending an identified broadcast message to all the neigh-

bors, and waiting for incoming replies. Only already connected nodes will take the

address of the sender and answer with a ping reply unicast packet, providing also the

address of the sink and the same ID of the ping request. Before answering, the already

deployed node waits for a predefined amount of milliseconds, equals to the node id, in

order to avoid collisions between the ping replies. In this way it is possible to easily

and rapidly get the picture of how many nodes are available within the radio range of

a node and which is the signal strength. The ping request is sent every half second, to

allow the deployer to monitor the radio signal strength while walking and eventually

change direction when the signal strength becomes too low.

In case of outdoor deployments, the deployment module can provide additional features

to ensure a better robustness of the deployment. Following the observations made in

the previous subsection, the returned signal strength can include the temperature or

weather effects. Configuring the possible excursion of temperature and the rainfall, a

CHAPTER 4. DESIGN AND IMPLEMENTATION 90

Figure 4.7: Available data to the deployer through the deployment support module.

pessimistic signal strength estimation is made, so that the deployment will be hopefully

resistent to these changes. In other words, if the program is provided with a thermal

excursion value of 30 ◦C, it will subtract the correspondent number of dB that can

derive from an increase of temperature of 30 Celsius degrees.

Every 7 seconds, each mote tests its connectivity with the sink node, generating a mesh

request message. The mesh request is a message sent to the sink node using the Rime

primitive Mesh. The sink will reply to each mesh request with a mesh reply message

with the same ID of the request. If a mesh reply is received, the node is assumed to be

correctly connected to the rest of the network. The 7 seconds time was chosen in order

to not overload the network with mesh packets.

Redundancy check is made by counting how many nodes are available in the radio

range of the node. This is done collecting the number of unicast replies with the same

Ping ID.

The module also checks the Battery status exploiting the battery voltage. The choice

is due to the fact that it represents the best energy saving way to obtain an acceptable

estimation of the battery status. Alternatively, the battery lifetime estimation module

can be used for a more fine-grained estimation in the future releases of the module.

Figure 4.7 summarizes the data available in real-time to the deployer through the de-

ployment support module that has just been described. The LED visualization requires

the knowledge of the coding, but it allows to not increase the costs with additional LCD

screens or similar.

Every deployed node will self-configure on the best channel available. This operation,

however, must be performed in a limited amount of time, in order to save the energy

and reduce the time. In order to save as much energy as possible, I designed and

implemented a rapid channel quality assessment module that will be illustrated in the

next subsection.

CHAPTER 4. DESIGN AND IMPLEMENTATION 91

4.4.6 Channel quality assessment in indoor WSN

Channel quality estimation is a critical issue in wireless sensor networks. Communi-

cating over a reliable radio channel can improve network performance and lead to a

better usage of the limited amount of the available energy. In fact, a bad radio channel

may increase network latency, packet loss rate and thus the amount of retransmissions.

Whenever a network is deployed, it is important the ability of the network to reliably

estimate the available wireless channels quality and to self-configure on the best one.

The target of my study is to find a way to obtain a rapid channel quality assessment,

so that the deployed nodes can self-configure onto the best of the 16 802.15.4 chan-

nels available in the 2,4 GHz band. The study acquires importance especially where

Wi-Fi interference may affect some of the channels and disrupt the connectivity. Each

of the sixteen 802.15.4 channels is 3 MHz wide and centered around the frequency

2405 + (5 ∗ n) where n is the number of the channel ranging from 0 to 15, and some

channels overlap with the Wi-Fi channels as shown by Musaloiu and Terzis [93].

A wide number of approaches have been proposed to adapt routing schemes to changes

in link quality, for example based on the number of packets received. In the last years,

approaches tend to be based more on the information retrievable from the radio hard-

ware. Popular indicators are the Radio Signal Strength Indicator (RSSI) and the Link

Quality Indicator (LQI), which are usually available from many radio chips like the

Chipcon CC2420. RSSI and LQI are computed differently, and although both indica-

tors provide generally a coherent view of the status of the link, their relation with the

Packet Reception Rate (PRR) is different. The RSSI tends to fall at a fast rate when

packets are lost and flattens when the PRR is high as shown in Figure 4.9, while LQI

over PRR is more linear, as shown in Figure 4.8.

The characteristics of RSSI and LQI versus PRR shown in the figures, are confirmed

by all the experimental results obtained by the research community. In particular, data

on the relationship between RSSI, LQI and packet reception rate have been shown by

Rein et al. [10, 94], Holland et al. [90], Levis et al. [95, 96, 97, 11], Lin et al. [98],

Sang et al. [99], Xiao et al. [100] and Chen et al. [101].

Despite all these articles describe the same behavior, confirming the ones shown in the

figures, there is not a joint way of thinking in the wireless sensor network community

on which between LQI and RSSI represent the best metric for the link quality estima-

CHAPTER 4. DESIGN AND IMPLEMENTATION 92

Figure 4.8: Relationship between LQI and PRR. Figure is taken from Rein [10] and

appears under explicit permission of the owner.

tion. Some studies conclude that RSSI is better [95], while some others conclude that

LQI has a stronger correlation with the Packet Reception Rate (PRR) [90].

However, the research community agrees on the non-usability of LQI for fast link qual-

ity estimation, because of its high variance. Srinivasan and Levis [95] mark LQI as

unattractive because they show that LQI mean value gives a good link estimation only

when averaging more than 120 packets. This large amount of packets needed because

of the high LQI variance, that is marked as a limitation by the whole sensor network

community.

Given the observations above, RSSI correlation with the PRR is not optimal for link

quality estimation, and LQI mean value is too slow for a rapid channel quality assess-

ment.

In order to make a proper choice on the selection of the link quality metric to be used

for a rapid channel estimation, I set up my own data collections using two Sentilla

Tmote Sky platforms, respectively a sink node and a sending node. Multiple data

collections were retrieved with different transmission power, in different environments

and at different distances ranging from few centimeters to the maximum radio range,

CHAPTER 4. DESIGN AND IMPLEMENTATION 93

Figure 4.9: Relationship between RSSI and PRR. The figure is taken from Rein [10]

and appears under explicit permission of the owner.

including obstacles. The sink node iteratively triggers the sender to send 256 packets

on a specific channel and after each received packet it collects RSSI, LQI and noise

floor reading values. Each packet has a length of 8 bytes and the same procedure is

iterated over all the 16 802.15.4 radio channels in the 2.4 GHz band.

Fast channel quality estimation exploiting the LQI variance

My experimental results confirmed all the prior work on LQI and RSSI metrics and

the Figures 4.8 and 4.9. It is clear how the LQI mean value surely fits better the PRR

curve as a whole. However, trying to relate the LQI variance to the PRR and the

LQI mean value, I obtained a logarithmic relationship between LQI variance and LQI

mean value. Same kind of curve was found in recent measurements by Kannan Srini-

vasan [11], which are shown in Figure 4.10. The worst the link quality, the higher the

LQI variance. This remark can also be observed in the experiments by Rein, shown in

Figure 4.8: the LQI does not varies that much with high PRRs. The fact that the LQI

variance decreases for LQI values close to the bottom threshold, is assumed to be due

to the low number of packets received in such scenarios.

CHAPTER 4. DESIGN AND IMPLEMENTATION 94

Figure 4.10: Relationship between the CCI (LQI) mean value and the CCI (LQI) stan-

dard deviation. The figure is taken from Srinivasan et al. [11] and appears under explicit

permission of the owners.

Given these results, I can assume that also my experimental data are correct, and that

the LQI variance actually increases as long as the link quality and the PRR decreases,

since this is indirectly confirmed by experimental results of Rein and Srinivasan, al-

though not focused on the LQI variance.

As a result of my experiments, I can show that the LQI variance is not a limitation: if

used as metric for channel quality assessment, it requires only few packets.

The key point is to overturn the common belief of the research community that consider

the LQI variance as a limitation. It can instead be exploited as part of the metric that

estimate the channel goodness. My results showed in fact that there is a relationship

between the channel goodness, defined by packet received rate when no environmen-

tal noise is affecting the measure, and the LQI variance between received radio packets.

The values of LQI variance depend on the transmission power used, so it is inconve-

nient to define an empiric threshold or mathematical functions to distinguish low and

high packet loss rate. Instead, from the several experiments that have been carried out,

it seems possible to state that a good channel’s LQI variance is in the order of hundreds

whereas an unreliable channel’s LQI variance is usually exceeding the one thousands

value.

CHAPTER 4. DESIGN AND IMPLEMENTATION 95

Exploiting this observation, a link quality estimator module based on the first received

packets’ LQI variance has been implemented. It is inserted as part of the deployment

support, but it can be used also as a self-standing module and called separately by the

application whenever needed.

A preliminar evaluation of the module is done in section 5.4 and the results are en-

couraging: less than 10 packets are needed to perform a reliable and energy-saving

estimation.

Chapter 5

Evaluation

In this chapter I evaluate the application support sub-layer that has been described in

Chapter 4 and some of the issues raised in the previous chapters. Each module of the

sub-layer has been evaluated separately, and the focus has been put mainly on energy

consumption since, as already explained in the introductory part, it is the most im-

portant metric for evaluate wireless sensor networks performance. Through outdoor

deployments expeditions, I tried to evaluate the temperature and weather effects on

sensor motes. The channel quality assessment module is instead evaluated for its ra-

pidity. In other words, the channel quality assessment module is evaluated in terms of

how many packets are actually needed to obtain a reliable estimation of the link quality.

5.1 On-line battery monitoring module

The online battery monitoring lightweight module is based on a model that returns the

residual amount of current drain given the current temperature and battery voltage. The

model is built for non-rechargeable batteries and it is computed on experimental results

that were shown in Section 3.3.2. The module was not evaluated for different loads

because this operation would need several months, and the Thesis duration was of 20

weeks. However, it has been evaluated whether the impact of temperature was correctly

handled. New experiments showed that temperature was actually correctly handled in

the model. However, an important remark arose from several outdoor experiments:

some problems may arise in case of high thermal excursions. Whenever the motes are

placed into an open-air field for many days, they are usually covered or inside a box.

96

CHAPTER 5. EVALUATION 97

Figure 5.1: Thermal excursion between day and night registered during an outdoor

experiment. The battery estimation may be strongly affected.

Whatever the season or the climate of the place, temperature will vary and will never

be constant. This is not a problem itself, because values can be averaged for the sake

of the sensed values.

If the residual lifetime is computed given the current values, the designed module will

provide different values depending on the temperatuire, and thus depending on the day

time and weather conditions. On the other hand, if the estimation is based on a long

average of values, it may not be reactive enough to understand changes in the program

behavior or sensed environment. Figure 5.1 shows the high temperature variation re-

ported in an outdoor experiment: the thermal excursion between day and night can be

very high and thus the battery lifetime estimation of the system will vary sensibly, as

shown in Figure 3.4. This implies that unwanted actions may be triggered because the

estimation can temporarily changed according to the temperature.

A compromise should be adopted in the design of the module. Either the privilege is

given to reactivity of the system and the estimation is based on the current values; either

more sophisticated techniques can be studied to avoid this problem: for example both

voltage and temperature can be averaged based on a certain amount of values stored

into the secondary storage.

CHAPTER 5. EVALUATION 98

5.2 Sensor data query module

The sensor data query module described in Section 4.3 is based on log files stored

in the secondary memory and certainly enables multiple advantages. It enables the

application to perform both continuous and historical queries with the same easiness of

a snapshot query. By exploiting continuous and historical queries the application can

make more robust and reliable decisions based on both short- and long-term views of

the sensed parameter.

The information logged in the file system is persistent to node failures and can be also

used for understanding the causes of a failure. Moreover, the logged information can

also be disseminated through the network, thus enabling other nodes to monitor the

status and health of the network, creating a real monitoring protocol.

However, all these features come with a price in energy consumption. In fact, to log

data into the secondary memory has a current draw of 15 mA if using the flash memory

available in the Tmote Sky platform. The read operation onto the ST M25P80 40MHz

serial code flash takes 4 mA. I carried out some measurements in order to evaluate the

energy-efficiency of the designed sensor data query module using Energest.

The log file is divided into two arrays, and each of them is structured as circular buffer.

In this way, each location is written separately and that enables a constant energy con-

sumption in terms of writing. In fact, always one single cell of a prefedined dimension

is written each time.

Figure 5.2 shows the energy consumption when trying to write one cell of the array of

12 bytes. The amount of current draw is independent on the log size, and in the order

of dozens of uA each second, which may represents a good compromise. The applica-

tion can also autonomously decide the rate at which data is saved into the file system.

If necessary, application can thus decrease the rate to reduce the amount of energy used.

If the writing current draw is constant despite the file size, the same does not apply

for read operations. This is due to the current implementation of the module: logical

arrays of the log file are treated as circular buffer. The Coffee file system creates a log

file with all the changes whenever a rewrite operation takes place. This means that read

operations will have higher current draw as long as the file size will increase.

In the worst scenario, which takes place when the application reads the whole log file,

the current draw is quite high. Figure 5.3 shows the relationship between current draw

CHAPTER 5. EVALUATION 99

Figure 5.2: Current draw for writing operations is independent on the file size. Figure

shows the energy consumed by CPU and Flash operations when writing a cell of 12

bytes in the ST M25P80 serial flash of the Tmote Sky platform.

and size of the log file.

Top line in the figure shows the current draw in the current implementation of the log

file. Since every location is rewritten each time, the read time for the whole file takes

increases as long as the file size increases. However, since this is an unwanted limita-

tion that leads to energy-inefficiency, we can try to avoid this behavior by improving

the design.

The storage of values can be modified: first of all the two arrays should be separate

files. Moreover, instead of rewriting each location, append operations should be used.

This means that the files will be created by appending the new data and when the file is

full a new one will be created and the previous one deleted from memory. In this way,

the current draw of read operations would be like the bottom line in Figure 5.3. This

optimization, however, has not been implemented in practice due to lack of time.

5.3 Deployment support module

The deployment support module described in Section 4.4.5 has the novelty of speed-

up the deployment phase and reducing the manpower without adding any additional

hardware. The deployment support module that has been built does not need any addi-

tional hardware and provides the deployer with real-time information on radio signal,

CHAPTER 5. EVALUATION 100

Figure 5.3: Current draw when reading the whole log file. Time depends on the imple-

mentation and on the file system internals.

connectivity, redundancy, etc.

The quickness of the solution is deducible from the design and characteristics of the

module described in Section 4.4. It is obvious the benefit of having a real-time in-

field driving support for the nodes’ deployment. It is hard to quantify the benefit, but I

expect the deployment phase to be speeded-up, as well as the manpower significantly

reduced. In fact, the driving mechanism can be theoretically used by only one deployer.

Moreover, since the support already validates the deployment while placing the motes,

it is very likely that many errors will be avoided and thus do not have to be corrected

afterwards.

If the speeding-up of the deployment phase is intuitive, the energy consumption can

be quantified. To evaluate the efficiency of the solution, I compute the current draw

of processing operations introduced in both already deployed nodes and the newly de-

ployed ones.

Each new node to be deployed runs the ping protocol only for the needed amount of

time to place the mote. The ping protocol consists of 4 main phases: a ping request, a

ping reply, a sink connectivity check, and battery and LEDs monitoring. The current

draw for each phase has been computed using Energest, the on-line energy estimation

module available in Contiki. Since the ping with the neighbors is repeated every half

second, it is the operation that is computationally heavier. The sink connectivity check

CHAPTER 5. EVALUATION 101

Figure 5.4: Current draw of cpu operations and radio transmissions in the ’Ping pro-

tocol’. Current draw is computed using Energest over a 5 seconds time slot, assuming

communications with only one node.

is made every 5 seconds, thus it is not that relevant. Battery consumption and LEDs

monitoring cpu operations are negligible compared to the previous ones, since they

require less than 1 uA.

Figure 5.4 shows the current draw of the processor and the radio transmission in the

newly deployed mote every 5 seconds, which includes 10 pings and 1 connectivity

check with the sink and battery status. The total draw every 5 seconds is 363,8 uA if

the mote is communicating with one neighbor. Current draw increases linearly with

the number of nodes deployed.

Every node in the deployed area needs to interact with the surrounding motes. The sink

needs approximately 9,4 uA to process an incoming connectivity check. A surrounding

mote that should reply to a ping request consumes around 1 mA every 5 seconds to

process the request, wait the time needed to avoid collisions and answer with an unicast

ping reply. Figure 5.5 shows the comparison between the current draw of an already

deployed node that answers to the ping requests and a new node to be deployed with 4

neighbors.

Since the deployment module has been tested with NULLMAC as surrounding MAC

layer, the most relevant draw is represented by the 20 mA needed by the radio listen

operation. However, if other MAC layers are adopted, the radio energy consumption

can be decreased.

CHAPTER 5. EVALUATION 102

Figure 5.5: Current draw of cpu operations and radio transmissions in a new node and

an already deployed node when using the ’Ping Protocol’. Energy is computed using

Energest over a 5 seconds time slot, assuming communications with 4 nodes.

However, the novelty of this approach is that the actual consumption takes place only

when the ping protocol is running, and this represents a very limited amount of time:

much less than one minute can be enough to place a mote properly. Moreover, not all

the nodes will answer to ping requests, because not all the nodes will be in the radio

range of the new node.

5.3.1 Experiences from outdoor expeditions

Deployments carried out during this Thesis have confirmed the unpredictable behavior

of nodes deployed in an outdoor environment. I carried out the deployments in differ-

ent areas, such as fields, parks, parking slots and streets under different atmospheric

conditions. The target was to experience different situations and collect data in order

to understand the behavior of the motes and reveal the common sources of problems in

the deployment phase.

There are many lessons learnt from the outdoor expeditions. The first one is certainly

that it is actually very difficult to deal with the radio signal. If the soil is not completely

flat, there will be relevant discrepancies of the signal strength in the surrounding area,

CHAPTER 5. EVALUATION 103

Figure 5.6: Example of a grey area, reported in my outdoor expeditions. RSSI is

measured between two nodes at different distances.

and there is a greater probability of having grey areas even of few centimeters. ”Grey

areas” are also described by Reijers [102] and Zhao [103], and are areas with absence

of radio signal inside a radio-covered area. My experiments showed that the probabil-

ity of having grey areas increases with grounds that are only apparently flat. Figure

5.6 shows a grey area in a park with an almost flat soil. Motes at a distance of 10-12

meters had a packet reception rate of 0, while all the other surrounding motes had full

packet reception rate. Given the grey area presence, it is hard to define the borders of

the radio range between two communicating motes. Placing the first mote and moving

away until the radio signal becomes zero, is thus not a good solution.

The height of the motes from the ground strongly affects the signal strength, as also

reported by Anastasi et al. [91]. Coherently with their result, I also experienced prob-

lems when the distance of the nodes from the ground is less than 1 meter. Moreover,

by lifting motes of only 1-2 centimeters, I could reveal remarkable changes in the radio

signal strength.

Antenna position and rotation is probably the most important factor driving the signal

strength. However it is often underestimated: a circular range profile is often assumed

when deploying or computing coverage and connectivity issues. The antenna non-

omnidirectionality, the radio dependance on the hardware, and the radio irregularities

have been highlighted by Zhou [104]. During my deployments, even an impercepti-

CHAPTER 5. EVALUATION 104

ble rotation of the node would cause the RSSI to increase or decrease significantly. If

the nodes were not well-anchored to the ground with a proper support structure, they

vibrated and oscillated with wind blasts, thus causing the radio signal to have inconsis-

tencies with respect to the rest of the deployment.

Another important lesson learnt in my outdoor expeditions is the high impact caused

by electronic devices. Microwaves strongly affects the signal strength even if they are

more than 50 meters away from the deployment area. But also alarms and other elec-

tronic objects may affect the deployment. In an outdoor expedition I carried out in

the Saab parking slot, the radio signal pattern was heavily affected by the presence of

parked cars. More precisely, the signal was really low in motes close to the cars with

alarm systems. Therefore, before a deployment, a careful survey of the deployment

area must be carried out, in order to reveal the presence of any possible interfering

electronic device: even the most harmless object can cause loss of connectivity.

All these challenges introduce a very important issue: the problem of repeatability of

outdoor experiments. It is almost impossible to have comparable results between sim-

ilar deployments. Without focusing on weather conditions, and thinking instead only

on the position and rotation of the motes, it is really difficult to obtain the same results.

In particular, even anchoring the motes to the ground, so that they are not affected

by wind may not be enough. Whenever the motes were removed from their position

and replaced carefully at the same place (simulating a change of the battery pack), the

radio signal strength was not the same. As mentioned before, even the most subtle

difference may make a difference from 0.5 up to 4 dB in the signal strength. Even if it

may sounds odd or overstated, I have experienced severe problems of repeatability of

outdoor experiments in all my deployments, and wasted lots of time because of these

subtle differences.

My experiments were carried out in both sunny, cloudy, foggy, rainy and snowy days

and environmental data such as relative humidity and temperature were stored together

with the reception rate and the radio signal strength. I experienced many RSSI and

LQI variations in my experiments; however, they appeared not to be that related to

the weather conditions: rather they coincided with the temperature pattern. Figure 5.7

shows the patterns of RSSI and temperature over more than 48 hours. I retrieved the

data using Tmote Sky nodes deployed in a wheat field. Temperature is taken using the

CHAPTER 5. EVALUATION 105

Figure 5.7: RSSI and temperature sensed by two motes deployed in a wheat field in

Govone (Italy) over more than 48 consecutive hours. The pattern of the two curves is

almost identical.

SHT11 sensor and it reaches high values because nodes were covered, creating a sort of

greenhouse effect. The two curves follows exactly the same pattern. Such deep impact

was not revealed with either rain, fog or snow compared to the sunny conditions. Same

applies for the LQI indicator: its pattern coincides with the temperature pattern as well.

A careful evaluation of the temperature impact on radio signal strength is described in

Section 5.3.2.

5.3.2 Temperature effect on the radio signal strength

The connectivity validation includes optimizations for outdoor deployments. In par-

ticular, it is possible to make the deployment more robust by calculating the possible

CHAPTER 5. EVALUATION 106

Figure 5.8: LQI and temperature sensed by two motes deployed in a wheat field in

Govone (Italy) over more than 48 consecutive hours. The pattern of the two curves is

almost identical.

impact of temperature on sensor motes. Such impact was also explained by a recent

paper of Bannister et al. [92]. They experienced significant thermal excursions between

day and night that were related to a change of the signal strength. As shown in the pre-

vious chapter, I experienced the same kind of problem during my outdoor expeditions,

as shown in Figures 5.7 and 5.8.

In order to evaluate the actual effect of temperature on the radio signal, and confirm

the results retrieved in my expeditions, I carried out several experiments. I warmed

and cooled both Tmote Sky and MSB430 motes, using the CRC Minus 50 spray [105],

causing a thermal excursion from around -30 ◦C up to +50 ◦C. Observing the radio sig-

nal strength pattern and relating it to the varying temperature, I confirmed the behavior

of motes in my outdoor expeditions. The relationship between RSSI and temperature

CHAPTER 5. EVALUATION 107

Figure 5.9: Radio signal strength variation with respect to the temperature in the Tmote

Sky platform. Temperature is measured using the SHT11 sensor.

for the Tmote Sky is shown in Figure 5.9, while Figure 5.10 shows the relationshup for

MSB430 nodes.

Looking at the graph it is possible to understand that the temperature can cause a signif-

icant variation of the RSSI. In my experimental result, the RSSI variation reported was

close to 9 dB with a difference in temperature of 80 ◦C. However, the variation is not

uniform: it is more pronounced at higher temperatures, and this may be an important

consideration when deploying the motes in desert areas, where the thermal excursion

is high. Not casually, Bannister et al. [92] were able to see this significant variations of

the radio signal strength with nodes deployed in the Sonoran Desert of the southwest-

ern United States, where daily summertime temperatures may vary from 25 ◦C to 45
◦C, and temperatures in an exposed enclosure may reach 65 ◦C.

In order to understand the cause(s) of this behavior, I cooled each single component

of the platforms, starting from the CPU and the oscillator. This operation was possi-

ble thanks to the precision of the CRC Minus 50 spray. This operation showed that

the cause of this sensibility to temperature was caused by the CC2420 radio chip in

the Tmote Sky platform and by the CC1020 radio chip in the MSB430 platform. This

confirms the observation of Bannister et al.: they realized that the reason was the radio

chip by looking at older versions of the Chipcon manuals.

CHAPTER 5. EVALUATION 108

Figure 5.10: Radio signal strength variation with respect to the temperature in the

MSB430 platform. Temperature is measured using the SHT11 sensor.

In addition to the experiments of Bannister, I can also show that the Link Quality Indi-

cator (LQI) is affected by the thermal excursion as well as the RSSI. Figure 5.8 shows

the patterns of LQI and temperature. These experimental data were obtained in the

same outdoor experiment carried out in the wheat field illustrated before. RSSI and

LQI curves follows exactly the same pattern ad temperature. LQI excursion in the

experiment was around 10 for a thermal excursion of 45 degrees, while the RSSI ex-

cursion was of around 6 dB. Further experiments, however, have shown that if the link

quality is really high, it may not be affected by a little thermal excursion.

Thermal excursion may also affect strongly the battery lifetime estimation of the sys-

tem. As mentioned in Section 5.1, temperature strongly affects the battery duration and

voltage. The effect is opposite with respect to the radio signal: the lower the tempera-

ture, the lower the battery duration. Therefore, the battery estimation will be different

at different temperatures.

As a summary, temperature effects on radio signal are not negligible, and should be

CHAPTER 5. EVALUATION 109

definitely considered in outdoor applications, like fire detection [106], where a too

high temperature may cause loss of connectivity. The deployment support subtracts

in a pessimistic way the effects that these phenomena would cause to the radio signal

given the current conditions, thus ensuring a more robust and reliable connectivity.

5.3.3 Comparison of temperature and weather effects

As well as temperature, also weather effects should be evaluated. In several published

work on wireless sensor network outdoor expeditions, it is mentioned how weather

conditions strongly affect the radio signal.

Anastasi et al. [91] show an extremely high variation due to fog and rain, both with-

out supporting the thesis with any data about the rainfall amount, nor the deployment

scenario.

Capsuto et al. [107] studied the effects of weather phenomena on sensor network com-

munication links, monitoring three links at three different frequencies in the 2.4 GHz

ISM band. Their study concludes that weather has strong impact on motes connectiv-

ity. However, from their deployment scenario shown in the picture, it seems that the

deployed nodes were at ground level on a roof of a building. As we mentioned earlier,

motes should be kept at least at more than 1 meter height. This implies that motes were

probably affected by the rain cumulated on the ground rather than on the pure rainfall.

They also present a regular RSSI excursion every 24 hours, indicating that every day

and night the temperature was affecting the signal strength. No measure of the rainfall

amount is provided.

Also from Sun et al. [89] expedition it is possible to see the temperature effect on sensor

motes. It can be seen that every 24 hours there is a loss of connectivity, probably due to

the thermal excursion between day and night. However, the loss of connectivity is also

reported with rainfalls from 0.4 to 1.4 mm. It is not clear the height from the ground

nor the exact position of the motes.

Thelen et al. [108] studied the radio wave propagation in potato fields. From the Figure

5 of their work [108], rain, temperature and RSSI are unified in the same graph. It is

possible to see that temperature and RSSI are somehow related, but the most important

thing is that in all the periods with rainfalls, the RSSI has no significant change. More-

over, in the periods of time with highest rainfalls, the RSSI was at the maximum of its

value.

Thelen’s experimental results where confirmed by some of my outdoor deployment re-

sults. Motes that I left at the rain, fog, and snow, did not show any visible variation

CHAPTER 5. EVALUATION 110

Figure 5.11: Effects of temperature, fog, rain and snow on the radio signal strength.

Experimental data is retrieved in a wheat field expedition during December in Govone

(CN), Italy.

of the signal strength, compared to the effect of temperature. Motes were at 150 cm

height from the ground in a wheat field. They were also anchored to the soil with wood

pieces, so that even wind blast could not move them. Figure 5.11 shows the data re-

trieved under different atmospheric conditions: the RSSI seems to be not affected by

weather conditions. Rather, the temperature effect is much more visible from the RSSI

curve. Rainfall during the experiment was in the order of 1 mm/hour.

Summarizing, there is no common view on weather effects like fog and rain on the

radio signal. Different experiences show different results. However, there seems to

be a constant in all the experiments: all published work and my experiments confirm

that temperature and RSSI are somehow related. A spontaneous consideration can be

CHAPTER 5. EVALUATION 111

whether it is the change of temperature brought by rainfalls, snow, and fog that affects

the radio signal instead of the pure atmospheric event. From the data available on

published work it seems more that it is the combination of temperature and weather

effects that causes signal loss rather than the pure atmospheric event itself. In fact, all

my outdoor experiences did not show any dramatic effect of rain, as instead reported

from some other outdoor experiences.

This observation would be reinforced by the fact that many radio vendors state that rain

should not affect 2,4 GHz transmissions that much. Different sources [109, 110, 111,

112, 113] state that either thick fog or rain affect the line of sight (LoS) radio signal by

at most 0.05 dB/km in 2,4 GHz frequencies. Rain fade affects instead a lot frequencies

higher than 10 GHz.

To give a preliminary check to this theory, I made a ’special’ outdoor deployment. The

target is to differentiate the rain effect from the temperature effect. In most of the

related work, the data available from the deployments mixed the two information, thus

not enabling us to appreciate the difference in the effect. The nodes were kept into

two opposite buildings, thus at an almost fixed temperature. Buildings are separated

by few dozens meters, and they have no obstacles in between (apart the walls). The

height from the soil should not represent a problem, since motes were deployed at the

fourth floor of the buildings. Motes were at the maximum transmission power and at

the border of the radio range, so that it was easier to detect effects.

In this way, the temperature was not affecting the motes while communicating and the

only rain and the rest of the environment was affecting the wireless communication.

This gives the possibility to test the real effect of rain on sensor motes communication.

This kind of deployment give me also the possibility to relate the effects of microwaves

and electromagnetic disturbances with temperature and weather effects. The buildings

are in fact offices, and thus the pattern of daytime is different from the one of night

hours.

Figure 5.12 shows the results of the experiment. Data about the amount of rain was

taken by a weather station situated at 400 m away from the deployment area [12]. Data

about rainfall, windspeed, temperature, humidity, solar light, snow and atmospheric

pressure are available. In order to check the presence of fog, the image available from

one of the webcams situated close to the deployment area has been retrieved and ana-

lyzed.

CHAPTER 5. EVALUATION 112

Figure 5.12: Effects of temperature, fog, rain and snow on the radio signal strength.

Experimental data is retrieved deploying the sensor nodes into two opposite buildings

during the last weeks of January in Kista, Sweden.

Figure 5.13 shows the visual of the webcam image, pointed towards nord-west. The

Kista Science Tower is visible. Effects of rain are not that dramatic if the motes are

kept at an almost constant temperature. Fog and snow do not affect communication nor

RSSI. Rainfalls in the order of 0-2 mm mm/hour do not affect the radio signal strength.

To reach effects in order of some dB, the rainfall should be higher than 2-3 mm/hour:

when the rainfall is above 5 mm/h a loss of 3 dB was detected. Given more time, it

will be verified if the little effect was caused by the rainfall at the LOS or if it is rather

caused by other effects, like the water accumulated onto the window.

However, even if the effect is entirely due to the rain, it is evident that it has much

less impact than the temperature. Most of the fluctuations of the graph are due to the

CHAPTER 5. EVALUATION 113

Figure 5.13: Images captured from the webcam available in Kistavädret [12]. From the

bottom images it is possible to check the presence of fog and rain in the deployed area.

This figure appears under explicit permission of the owner.

interference produced by electronic device in daytime and the temperature. Spikes are

due to the radiators that were automatically switched on. Even if the difference in tem-

perature produced was less than 4 degrees Celsius, the effect on the RSSI was almost

comparable to the one of heavy rain.

As a conclusion of these experiments, it is not possible to state with certainty that

rain does not actually affect communication at all, but it is however possible to state

that temperature and electromagnetic interference surely affects communication in a

stronger way, at least on the platforms used. Another remark is that keeping the motes

at constant temperature during the deployment may lead to a better robustness of the

network. Following also all the observation and experiences illustrated in this section

it will be possible to have a better knowledge of deployment of sensor networks and

avoid many common mistakes.

5.4 Rapid channel quality assessment

Section 4.4.6 described an innovative approach for channel quality assessment in wire-

less sensor networks. Exploiting the LQI metric retrievable from the radio hardware,

and computing the variance over the LQI of the received packets, it seems possible to

CHAPTER 5. EVALUATION 114

Figure 5.14: LQI variance over received packets in one of the worst channels during

the experiments. The straight lines represents the LQI variance value after 256 packets,

and its 80%. 10 packets are enough to get an LQI variance higher than the 80% long-

term value.

obtain an estimation of the goodness of the channel.

In particular, my experiments have shown that the LQI variance seems to be related to

both the packet reception rate and the link quality. I could see that the higher was the

LQI variance, the worse the link quality. It is not possible to define specific values for

good and bad channels because the LQI variance depends on the number of packets on

which it is computed. However, my experiments show that the LQI variance values are

approximately in the order of hundreds with good channels, while an LQI variance in

the order of thousands identifies unreliable channels.

In order to validate the proposed mechanism, I set up a data collection based on two

communicating nodes kept at fixed distance. One mote sends data and one sink node

collects data and triggers the first mote to send out packets. Each minute I scan all the

sixteen 802.15.4 channels by sending and receiving 256 packets on each channel. The

sink node collects for every received packet RSSI, LQI and noise floor readings.

CHAPTER 5. EVALUATION 115

Figure 5.15: LQI variance over received packets in one of the best channels during the

experiments. The straight lines represents the LQI variance value after 256 packets, and

its 80%. 10 packets are enough to get an LQI variance higher than the 80% long-term

value.

After a long run, channels 16 and 22 appear to be the worst and best channels respec-

tively. The average PRR is 87% for channel 16 and 99.9% for channel 22. The average

LQI variance between the two channels is around 100 in channel 22 and around 1600

in channel 16. This confirms our observation: the LQI variance increases as long as

the link quality decreases.

Based on these experimental results, I try to estimate the number of packets needed for

a reliable estimation of the link or channel quality based on the LQI variance. In other

words, I try to tighten the number of packets and see how many packets are actually

needed to obtain a value close to the long-term one, obtained after 256 received packets.

Figures 5.14 and 5.15 show that the variance of LQI quickly converges to the long-term

value. LQI variance estimation is 95% close to the long-term value after 30 packets are

received and greater than 80% after only 10 received packets, as highlighted by the

dashed line.

CHAPTER 5. EVALUATION 116

Figure 5.16: Relationship between the PRR versus Noise and LQI standard deviation.

Data is retrieved from the daily average PRR of each channel in the 2,4 GHz band.

Given the large difference between the LQI variance of good and bad channels, it seems

possible to rapidly identify whether the variance tends towards hundreds or thousands

after 10 packets are received. Given the previous observations, we can thus estimate

how channels are reliable using the LQI variance of only 10 received packets.

These experimental results acquire a significant importance if compared to the existing

metric that are widely used today for link quality estimation in wireless sensor net-

works. In particular, it has been demonstrated that the RSSI metric does not fit the

packet reception rate that linearly, because it has a characteristic that falls quickly as

soon as the packet reception rate decreases. The LQI mean value instead has a more

linear characteristic over the packet reception rate, as shown in Section 4.4.6.

However, due to its high variance, the LQI has always been considered not usable for

rapid channel estimation, because of the high number of packets needed to obtain a

good LQI mean value.

Srinivasan et al. [95] quantify the number of packets needed for having a reliable link

estimation using the LQI mean value in a number of packets greater of 120.

Using the LQI variance we show that we need much less packets than when using the

LQI mean value approach. The preliminary evaluation of my approach for link qual-

ity estimation shows that it is possible to get a good estimation of the channel quality

within as few as 10 packets, thus enabling a fast estimation. It is the first step towards

a reliable energy-saving radio channel quality estimator for wireless sensor networks.

CHAPTER 5. EVALUATION 117

From our experimental results it also appears a certain relationship between the RSSI

floor readings (or the so called environmental noise) and the packet reception rate. Fig-

ure 5.16 shows the relationship found in my experiments. The relation is probably due

to the fact that the packet reception rate depends both on link quality, distance between

motes and radio interference. The radio interference is readable from the noise vari-

ance, while the global link quality can be evinced from the LQI variance.

This observation leads to the conclusion, that an even more fine-grained approach for

link-quality estimation can be proposed. However, further experiments are needed to

validate this theory, with nodes at different distances and with different levels of noise

injected by purpose. This issue is left as future work, as well as how to perform a

scalable channel estimation: if the deployment is extended over a big area, there will

be sub-areas in which some channels are the best, and some other channels will appear

more reliable in other areas. The channel quality estimation module should be able to

solve this issue autonomously.

5.5 Discussion with respect to robustness

The application support sub-layer introduced in Chapter 4 contains several modules

that can be used by applications to improve their decisions and the global robustness of

the system. Robustness is a really important property of sensor networks, especially in

surveillance, military and monitoring applications.

The on-line battery monitoring enables the application to monitor constantly the resid-

ual lifetime of the system. Application can react fast and in case switch off some

components or peripherals to save energy and try to increase the lifetime of the sys-

tem. Alternatively, applications can inform neighboring nodes to change their routing

schemes before the node becomes unavailable. Resdiual battery could be directly used

as routing metric, ensuring a better robustness to node failures due to battery collapses.

Logging enables several features. Query of sensor data can be improved, giving the

application an extended knowledge on past data. Nodes of a network can check the

status of other nodes remotely, read their log files, as well as seek for the causes of

failures after the node is rebooted, as shown in Section 4.3.

The studies in Sections 5.3.2 and 5.3.3 on temperature and weather effects are really

useful when applied to the deployment module, because they can increase the robust-

CHAPTER 5. EVALUATION 118

ness of deployed nodes’ connectivity. In combination with the real-time driving sup-

port, the nodes can be considered as in a testbed placed in the actual deployment area.

In this way the probability of identifying problems that could occur after the deploy-

ment phase is much higher.

Robustness can be also achieved through self-configuration. The rapid channel qual-

ity assessment shown in Section 5.4 enables each node to self-configure on a reliable

radio channel, minimizing the number of retransmission and maximizing packet deliv-

ery, thus leading to a better energy consumption. It is especially important to ensure

robustness to Wi-fi interference in the 2,4 GHz radio band.

Although quantifying the robustness level of a node or a network is very difficult, I

expect that the introduction of the application support sub-layer that I designed would

improve the robustness significantly. This hypothesis is confirmed by real experiences,

illustrated in the previous chapters of this Thesis.

Chapter 6

Related work

Application layer design has not been the main goal of the research community in the

last years: research focused towards the lower layers of the OSI stack instead.

First attempt to put foundations on application layer design was made by Akyildiz

et al. [15], which distinguished three categories of application layer, giving hints on

how they should be implemented. However, no proposal of application layer protocols

specifically designed for wireless sensor networks were brought, to the best of my

knowledge.

Research has spent instead some effort towards generic application support through

middleware implementations. Wanner et al. [58] provided operating system support

for data acquisition in sensor networks. They abstracted families of sensing devices

in an uniform fashion, relying on classes of sensing devices defined based on their

finality. Leach [59] is a limited form of low-level collaboration in which nodes form

local clusters and all data within a cluster are aggregated.

Römer et al. [55] defined the characteristics and challenges of middleware design. They

specify how the main purpose of middleware for sensor networks should be to support

the development, maintenance, deployment, and execution of sensing-based applica-

tions, and they also explain why classical mechanisms and infrastructures are typically

not well suited for interaction with WSN.

Heinzelman et al. [20], after analyzing the different types of sensor networks appli-

cations and extracting the needed techniques for managing the network, designed Mi-

LAN (Middleware Linking Applications and Networks), a middleware that continu-

ously adapts the network configuration to meet the applications’ needs. It does so

119

CHAPTER 6. RELATED WORK 120

by receiving information from the individual applications about the QoS requirements

and information from the network about available sensors and resources such as sensor

energy and channel bandwidth.

Avvenuti et al. [54] designed an application adaptation layer for wireless sensor net-

works, which differs from any other middleware, because it is an hybrid approach for

reconfiguration of applications that combines the efficiency of execution of native code

with the flexibility and ease of programming of virtual machines like Maté [114]. They

are able to adapt applications to mutated operating conditions through the intervention

of an adaptation layer that intercepts calls to primitives and library functions made by

the application, and modifies the effects of such calls by executing specific fragments

of code, called adaptlets.

All the middleware approaches that have been proposed (to the best of my knowledge)

address only specific WSN application challenges. Given the big amount of challenges

that sensor networks applications have to face, this may be not enough. My proposal is

a modular support layer or middleware that includes many several different tiny mod-

ules, one for each of sensor networks’ main challenges like battery lifetime estimation,

network management, sensor query, autoconfiguration, and deployment. The applica-

tion support sub-layer which I propose is as an intermediate layer between applications

and operating system, that can be also integrated directly into the operating system,

for example in Contiki it would be placed above the Rime stack. The target of my

sub-layer is not to modify the behavior of the nodes or the network run-time, but it is

to simplify the application development, improve the application robustness through

autoconfiguration, and support the deployment of sensor networks.

Deployment support in particular has been widely studied in sensor networks commu-

nity, because of the importance of a good deployment. First approaches were based on

simulators and emulation testbeds, but their limitations led to new specific deployment

support for sensor networks.

The Sympathy debugging tool for pre-deployment of sensor networks [77] is a tool for

detecting and debugging failures in sensor networks. Sympathy is designed for data

collection applications and gathers distributed data at a centralized sink location for

analysis: nodes periodically send metrics back to a sink, which combines this infor-

mation with passively-gathered metrics to detect failures and determine their causes.

Sympathy localizes the source of problems in order to reduce overall failure notifica-

tions and point the user to a small number of possible causes. For example Sympathy

CHAPTER 6. RELATED WORK 121

gathers and analyzes general system metrics such as nodes’ next hops and neighbors.

Based on these metrics, it detects which nodes or components have not delivered suffi-

cient data to the sink and infers the causes of these failures. Sympathy is thus more a

debugging tool for deployed networks, able to foresee possible problems rather than a

pure deployment tool.

The so called Deployment Support Network (DSN) [72, 82, 115] surely represents a

good answer for deployed networks debugging. The DSN toolkit helps in testing and

monitoring sensor network applications in a realistic environment adding a separate

reliable wireless backbone network for the transport of debug and control information

from and to the target-nodes thus separating the debugging and testing services from

the WSN application. This approach has many strengths: the services run on a separate

hardware and not on the target-nodes, thus causing less interference and not sharing the

same computing and radio resources. Moreover it can be removed once the debugging

and testing is finished. This implies a very rich and precise feedback on the goodness

of the deployed network. However, in most of real-world cases, the application is first

developed, tested and emulated in one place, and then quickly deployed into another

place. Moreover one of the essential properties of sensor networks is the low-cost,

and the Deployment Support Network may represent a too costly solution, because it

adds additional nodes and requires more effort, which is not suitable, especially for

emergency situations and military or defense applications.

Li et al. [78] proposed a software for planning and deploying wireless sensor networks

to reduce deployment risks. Their framework is based on the open-source J-Sim simu-

lator, and their goal is to validate the feasibility of the architecture, testing for example

routing and MAC protocols. The goal is to build a planning software platform which

can also support deployment, reduce its costs and improve its efficiency. Although

efficient tool, it has the drawback of being a simulator, and thus present all the limita-

tions of simulators described previously. According also to [70], this solution does not

anticipate the need for low-power in-field user interfaces during the deployment phase.

The Sensor Network Management System (SNMS) [79] is an application cooperative

management system for wireless sensor networks proposed by Tolle and Culler. It

provides a query system to enable rapid acquisition of the network status and a logging

system to enable recording and retrieval of system events. SNMS works alongside

to the WSN application and it has been designed to be simple, robust and with the

purpose of occupy a minimal amout of RAM and generate network traffic only upon

user request. Robustness is ensured because even when application fails, SNMS should

CHAPTER 6. RELATED WORK 122

still work and be used as a fallback system. The Sensor Network Management System

can be considered as the best example of existing application support sub-layer limited

to network management and failure recovery and debugging. It surely represent a valid

approach, but it is not targeted to the deployment support, because it does not help the

deployer in the various stages of deployment.

Liu et al. proposed SeeDTV [70], a deployment time validation framework that con-

sists of techniques and procedures for WSN status assesment and verification. It can

detect early problems in sensor node devices, wireless network physical and logical

integrity, and connectivity to the back-end such as a data server over the Internet. The

validation targets three levels of the system: per-node validation, communications val-

idation, and the whole system including application specific validation. As a result the

system has a higher chance of functioning as expected for an extended time, thus pre-

venting early system failures resulting in frequent visits to the deployment site, saving

time, effort and resources. SeeDTV surely represent a good example of in-field de-

ployment support, because of its deployment validation process and features. Strength

of this model is the in-the-field driving idea, and the support of external hardware like

multicolor graphical LCD display and removable storage. The nice external support is

however also a disadvantage, because it adds more devices, and thus more cost, weight

and power consumption to the motes, while Langendoen et al. [71] reported that even

debugging LEDs where switched off in favor of energy-efficiency during the deploy-

ment phase. Although the authors ensures that it represent a good choice for power

and weight, it is not mentioned the cost and the time that the deployment validation

takes. Given the complexity and the nice and complete picture that the SeeMotes gives

of each node, the validation process may take a long time.

Moteview [80] is a solution designed by Crossbow which allows chart view of sensor

readings and node status. The topology of the network is available, as well as the con-

nectivity and the status of the nodes. Historical and real-time charting of sensed values

are available, with data export capability and email alerts service that can be triggered

when sensed values are above a certain threshold. It is a very complete tool to moni-

tor the status of the network from a centralized node, but it has two main drawbacks.

Firstly it takes some minutes to give the complete view of the networks and healthy

nodes; secondly it is platform dependent: it is designed for MICA platforms, since

they are also manifactured by Crossbow.

All these excellent approaches have the common goal of validating the deployment of

CHAPTER 6. RELATED WORK 123

sensor networks either before or after nodes are placed. Although some solutions lack

of interoperability [80], or add additional costs [72, 116, 70] and energy consumption,

they all represent surely nice solutions for debugging an already deployed sensor net-

work. My solution’s goal is to tighten the limit between reliable deployment validation

and time and costs of the deployment. Without adding any additional hardware, my

deployment support consists in real-time driving mechanism for validate the deploy-

ment while guiding the user in the placement of the motes. The target is threefolded:

speed up the deployment process while mantaining reliability, add no further costs and

reduce the manpower involved in the deployment.

Link quality estimation is a topic that has been widely studied in the sensor network

community. Many different approaches have been proposed in order to adapt routing

schemes to changes in link quality, for example based on the number of packets re-

ceived. Later on Alizai et al. [117] described the challenges in short-term wireless link

quality estimation, and Fonseca et al. [118] proposed an innovative four-bit wireless

link estimation. The biggest part of the common approaches, however, is based on the

information retrievable from the radio hardware: in particular Radio Signal Strength

Indicator (RSSI) and Link Quality Indicator (LQI) behavior have been widely studied.

Data collection on the relationship between RSSI, LQI and packet reception have been

shown by Rein et al. [10, 94], Holland et al. [90], and Levis et al. [95, 96, 97, 11],

Polastre et al. [119]. In other studies on sensor networks issues, link quality metrics

have been also analyzed by Lin et al. [98], Sang et al. [99], Xiao et al. [100] and Chen

et al. [101].

Several of these works explains which between LQI or RSSI is more suitable for a link

quality estimation, explaining pro’s and con’s. Thesis were different, evident signal

that there is no unified views of which between RSSI and LQI represent a better esti-

mator. However, almost all the studies have highlighted how LQI mean value cannot

be considered reliable if only a little amount of packets are considered, because of the

high LQI variance. Levis and Srinivasan [95] quantified in 120 the number of packets

needed to have a reliable estimation of the LQI mean value.

My approach overturn this beliefs and exploit instead the variance of LQI values as

metric to perform a link or channel quality estimation, and it is shown how a reliable

estimation can be performed using only 10 received radio packets, thus in a fast and

energy-efficient way.

CHAPTER 6. RELATED WORK 124

Many experiences from outdoor deployments have been reported by the sensor network

community. Failures and problems have been reported for example by Srinivasan [73]

and Tolle [74], and general experiences and lessons from outdoor deployments have

been reported for example by Finne et al. [83] and Szewczyk et al. [75].

In particular, weather effects on wireless sensor networks have been discussed by Anas-

tasi et al. [91], Bannister et al. [92], Capsuto et al. [107], Thelen et al. [108] and Sun et

al. [89].

My contribution is to quantify and differentiate the amount of interference caused by

weather effects like rain and fog from the temperature, obstacles, etc. Through my ex-

periments it is possible to understand that temperature is the real cause of connectivity

interruption rather than rain and other weather effects. In this report I also write several

useful experiences from outdoor expeditions.

Chapter 7

Conclusions and future work

This Master Thesis digs into the world of wireless sensor networks applications. After

analyzing all the most common challenges and problems, it evinces that the needs of

applications and application developers are mainy related to battery estimation, sen-

sors and network management, deployment, autoconfiguration schemes such as chan-

nel quality assessment, and on how to provide robustness to the network.

An application support sub-layer has been proposed to solve these common challenges

and to give aid to the overlying applications. The support layer sits on top of the Contiki

operating system and it was designed to be modular, so that modules could be added

and implemented separately.

A computationally lightweight battery lifetime estimator has been designed for all

nodes carrying a temperature sensor, and gives an estimation of the battery status and

lifetime given the current consumption and current temperature. The module has been

demonstrated to be accurate, and to be able to quickly adapt to thermal excursions.

An accurate battery lifetime estimator can improve application decisions and allow the

creation of more efficient routing schemes.

Sensor data querying and robustness to the environment have increased with the design

and the implementation of a logging support that enables the applications to perform

continuous queries and historical queries with the same easiness of snapshot queries.

The energy consumption needed is minimal, while the application can perform histori-

cal and continuous queries at the same easiness of snapshot queries, thus improving the

robustness and reliability of decisions. The logging utility also enable a better mon-

125

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 126

itoring of the network status and health remotely, as well as the fault detection after

failures.

Deployment of sensor nodes has also been widely studied, and experiences and remarks

have been illustrated, especially for outdoor deployments. The effects of weather con-

ditions and temperature have been studied, and it is shown how with some expedients,

weather effects on radio signal can be drastically reduced. Effects of temperature, rain

and fog have also been quantified. Furthermore, a real-time deployment support has

been proposed and implemented, that differs from existing approaches in the sense

that without any additional hardware, it speeds-up the deployment of sensor nodes also

reducing the manpower involved. The module is also lightweight in terms of energy

consumption and it does not add any hardware cost.

Link Quality estimation has also been addressed in this Thesis. RSSI- and LQI-based

existing approaches are reviewed and it is shown how the limitation of the variance

of LQI can be instead exploited in order to obtain a fast channel quality estimation.

Experimental results have shown that from an average of 120 packets needed to obtain

a reliable estimation of the mean LQI value, an estimation is possible with as few as 10

packets, computing the variance of each LQI value.

Application support is fundamental in wireless sensor networks, and the solutions pro-

posed in this work are the first step towards a full support layer for WSN applications.

Preliminary evaluation shows the benefits brought by the introduction of the designed

application support sub-layer.

7.1 Future work

Since the design of the sub-layer is modular, its implementation can be enriched with

new features. Further studies on applications needs can bring to new modules creation,

like the already suggested DataBase Management System.

Concerning the existing modules, they can all be tested with other sensor networks

platforms, extending the preliminar work made on the Tmote Sky and the MSB430

platforms.

The battery lifetime estimator module can be finegrained including the computation

of the transient time and the direct dependancy between load on the battery and mA

consumption.

The sensor data query can be modified in such a way that the energy consumption is

further reduced following the remarks of Chapter 5. Remote logging can be optimized

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 127

with primitives for remote query selection in order to avoid entire bulk transfers over

the network.

The deployment module can be further extended by quantifying the effects of obstacles

and radio disturbances in outdoor deployment. A review of the module for really large

networks should be considered to quantify the scalability of the solution.

Finally, channel quality assessment can be finegrained in combination with the noise

floor reading variance, as suggested in Section 4.4.6. Moreover, sub-areas optimiza-

tions for the channel quality should be studied for a better performance of the network,

as suggested in the text.

Appendix

For the sake of completeness, I will insert a publication based on this Master Thesis

work, that has been accepted in a renowed conference in the wireless sensor network

area.

In particular, the preliminary work on rapid channel quality assessment is the topic of

the poster abstract accepted at the 8th ACM/IEEE International Conference on Infor-

mation Processing in Sensor Networks (IPSN’09).

The contents of the poster are a summary of Section 4.4.6 and 5.4. We show that us-

ing the LQI variance we need much less packets than when using the LQI mean value

approach to obtain a reliable channel quality assessment. This represents the first step

towards a reliable energy-saving radio channel quality estimator for wireless sensor

networks.

The reference to the poster abstract is the following:

Carlo Alberto Boano, Thiemo Voigt, Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes,

Luca Mottola, and Pablo Hernández Suárez. Exploiting the LQI Variance for Rapid

Channel Quality Assessment. In Proceedings of the 8th ACM/IEEE International Con-

ference on Information Processing in Sensor Networks (IPSN’09). San Francisco,

USA. April 2009 [120].

129

Poster Abstract: Exploiting the LQI Variance for
Rapid Channel Quality Assessment

Carlo Alberto Boano†‡, Thiemo Voigt†, Adam Dunkels†, Fredrik Österlind†,
Nicolas Tsiftes†, Luca Mottola†, and Pablo Suárez‡

{cboano,thiemo,adam,fros,nvt,luca}@sics.se†, {pablo.suarez}@saabgroup.com‡
†Swedish Institute of Computer Science

Stockholm, Sweden
‡Saab Security

Stockholm, Sweden

ABSTRACT
Communicating over a reliable radio channel is vital for
an efficient resource usage in sensor networks: a bad
radio channel can lead to poor application performance
and higher energy consumption. Previous research has
shown that the LQI mean value is a good estimator of
the link quality. Nevertheless, due to its high variance,
many packets are needed to obtain a reliable estima-
tion. Based on experimental results, we show instead
that the LQI variance is not a limitation. We show that
the variance of the LQI can be used as a metric for
a rapid channel quality assessment. Our initial results
indicate that identifying good channels using the LQI
variance requires an order of magnitude fewer packets
than when using the mean LQI.

1. INTRODUCTION
Channel quality estimation is a critical task in sen-

sor networks. When communicating over a bad radio
channel, applications suffer from high network latency,
poor packet delivery, and increased energy consumption.
Link quality estimation is typically based on informa-
tion retrievable from the radio, for example the Received
Signal Strength Indicator (RSSI) and Link Quality In-
dicator (LQI) from the CC2420 radio chip [1]. It is com-
monly agreed that the LQI mean value has a more linear
correlation with the Packet Reception Rate (PRR) than
the RSSI. However, the research community considers it
as unattractive for fast link quality assessment, because
of the high number of packets needed to obtain a reli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’09, April 15–18, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

able estimation. Srinivasan and Levis [2] show that the
LQI mean value provides an accurate link estimation,
but only when averaging more than 120 packets. This
large amount of packets is required because of the high
variance of the LQI that has been pointed out as a big
limitation also by Srinivasan et al. [3], Holland et al. [4]
and Rein [5].

We show that instead of being a limitation, the LQI
variance can be used to obtain a faster channel qual-
ity assessment, compared to the LQI mean value. The
LQI variance computed over received packets is low with
good channels, whereas a high variance identifies unre-
liable channels. Our initial experimental results suggest
that we can quickly identify channels with a high PRR.

2. CONTRIBUTION
Experimental setup. We carry out our experiments

indoors, both in office and residential environments. We
used the Sentilla Tmote Sky platform with the transmis-
sion power set to approximately -5 dBm. A sink node
collects data from nodes situated at distances ranging
from 1 to 6 meters. All nodes run the Contiki oper-
ating system [6]. The sink node triggers the sender to
send 256 consecutive packets on a specific channel. Each
packet has a payload length of 8 bytes. The sink node
collects RSSI, LQI and noise floor readings for each re-
ceived packet. We iterate the same procedure over all
the 802.15.4 radio channels in the 2.4 GHz band.

Experimental results. Our results show that the
link quality can be accurately estimated using the LQI
variance. Figure 1 shows the LQI variance of the best
and the worst channels during our experiments, which
are channel 22 and 16 respectively. The average PRR is
87% for channel 16 and 99.9% for channel 22. The LQI
variance is around 100 for channel 22 and about 1600
for channel 16, i.e. it is an order of magnitude higher
for the bad channel.

 0

 50

 100

 150

 200

 10 20 30 40

L
Q

I
v
a

ri
a

n
c
e

Number of received packets

LQI variance for a good channel
Long-term LQI variance

80% fidelity

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 20 30 40

L
Q

I
v
a

ri
a

n
c
e

Number of received packets

LQI variance for a bad channel
Long-term LQI variance

80% fidelity

Figure 1: LQI variance for a channel with high PRR (good) and a channel with a lower PRR (bad).
The left figure shows the good channel (PRR of 99.9%) with LQI variance of about 100, while the
LQI variance of the bad channel (PRR of 87%) in the right figure is around 16 times higher.

Since the LQI variance depends on the number of sam-
ples on which it is computed, it is inapt to define a rig-
orous threshold to distinguish good and bad channels.
Our results indicate, however, that a good channel’s LQI
variance is in the order of hundreds, whereas an unreli-
able channel’s LQI variance is usually above 1000. Our
experiments also show that the LQI variance increases
logarithmically when the LQI mean value decreases.

Our findings are confirmed by experiments of Rein [5],
Srinivasan et al. [3], and Xiao et al. [7], although they
focus on the LQI mean. Measurements of Rein (Fig.
5-12(a), [5]) and Xiao demonstrate that when the PRR
is very high, i.e. 95-100%, the LQI variance is very low,
whereas the variance is much higher with a lower PRR.
The LQI variation is lower on high quality links also in
measurements by Srinivasan, supporting our thesis.

Figure 1 further shows that the variance of the LQI
quickly converges to the long-term value. The LQI vari-
ance estimation is 95% close to the long-term value after
30 packets are received and greater than 80% after only
10 received packets, as highlighted by the dashed line.

Given the large difference between the LQI variance
of good and bad channels, it seems possible to rapidly
identify good channels using the LQI variance, substan-
tially reducing the number of packets compared to the
LQI mean-based approach.

3. CONCLUSIONS AND FUTURE WORK
We have taken the first steps towards a fast reliable

estimation of the channel quality. Our preliminary eval-
uation suggests that the variance of the LQI is not a lim-
itation as previously assumed. Instead, it can be used
as a channel quality assessment metric to quickly iden-
tify channels with a high packet reception rate. Our
results indicate that link quality assessment based on
the LQI variance can be performed with fewer packets

than the conventional approach based on the LQI mean.
We plan to carry out further experiments in different en-
vironments to determine the scenarios where the rapid
channel quality assessment based on the LQI variance
is reliable.

Acknowledgments
This work has been performed within the SICS Center
for Networked Systems, partly funded by VINNOVA,
SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera
and T2Data. This work has been partially supported
by CONET, the Cooperating Objects Network of Excel-
lence, funded by the European Commission under FP7
with contract number FP7-2007-2-224053.

4. REFERENCES
[1] Chipcon products from Texas Instruments. CC2420

datasheet, March 2007. http://www.ti.com.
[2] Kannan Srinivasan and Philip Levis. Rssi is under

appreciated. In EmNets’06, Cambridge, May 2006.
[3] Kannan Srinivasan, Prabal Dutta, A. Tavakoli, and

Philip Levis. An empirical study of low power
wireless. In SING Tech Report, October’08.

[4] M. M. Holland et al. Experimental investigation of
radio performance in wireless sensor networks. In
WiMesh’06, Reston, Virginia, USA.

[5] Tobias Rein. Energy and time efficient link-quality
estimation for wireless sensor networks. Master’s
thesis, ETH, Zurich, Switzerland, April 2007.

[6] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In EmNets’04, Tampa, Florida.

[7] Shuo Xiao et al. Transmission power control in
body area sensor networks for healthcare
monitoring. In IEEE Journal on Selected Areas in
Communications, vol. 27, pag. 37-48, January 2009.

Bibliography

[1] IEEE. 802.15.4 - 2006 standard, revision of ieee std 802.15.4-2003 edition,

September 2006.

[2] Zigbee Alliance. Zigbee specifications, document 053474r17 edition, January

2008.

[3] Adam Dunkels, Fredrik Österlind, and Zhitao He. An adaptive communica-

tion architecture for wireless sensor networks. In Proceedings of the 5th ACM

Conference on Networked Embedded Sensor Systems (SenSys’07), Sydney, Aus-

tralia.

[4] Moteiv Corporation. Tmote Sky - Quick Start Guide, 1.10 edition, January 2006.

http://www.sentilla.com/pdf/eol/tmote-sky-quickstart.pdf - Last visited January

2009.

[5] Texas Instruments, Dallas, USA. MSP430x1xx family User’s Guide, rev. f edi-

tion, 2006. http://focus.ti.com/lit/ug/slau049f/slau049f.pdf - Last visited January

2009.

[6] ScatterWeb GmbH. MSB: modular sensor board, version 1.0 edi-

tion. http://www.scatterweb.com/downloads/MSB-datasheet-doc1.0-en.pdf -

Last visited January 2009.

[7] C. Behrens, O. Bischoff, M. Lueders, and R. Laur. Energy-efficient topology

control for wireless sensor networks using online battery monitoring. Karl-Jörg

Langenberg ed.

[8] Duracell. Alkaline-Manganese Dioxide batteries, entire mno2 technical bulletin

collection edition, 2005. http://www.duracell.com/oem/Pdf/others/ATB-full.pdf

- Last visited January 2009.

133

BIBLIOGRAPHY 134

[9] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actor networks:

research challenges, volume Ad Hoc Networks 2. Science direct, May 2004.

[10] Tobias Rein. Energy and time efficient link-quality estimation for wireless sen-

sor networks. Master’s thesis, Eidgenössische Technische Hochschule Zürich

(ETH), Zurich, Switzerland, April 2007.

[11] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. An empir-

ical study of low power wireless. In SING Tech Report, October 2008.

[12] Bengt Fogelberg. Kistavädret. Web site. Available at: http://soloregn.se/ - Last

visited: February 2009.

[13] Mohammad Ilyas and Imad Mahgoub. Handbook of sensor networks : compact

wireless and wired sensing systems. CRC PRESS LLC, Boca Raton, FL, USA,

2005. ISBN 0-8493-1968-4.

[14] Kay Römer. Wireless sensor networks: From science to reality. In Proceed-

ings of the International Conference on Sensor Technologies and Applications

(SENSORCOMM’07), Valencia, Spain, October 2007.

[15] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A

Survey on Sensor Networks, volume 40 of 8. IEEE Communications Magazine,

version 2002-11-07 edition, August 2002. ISSN: 0163-6804.

[16] Pablo Suárez Hernández. Reducing the energy consumption of zigbee with a

power-saving mac protocol. Master’s thesis, Universidad de Sevilla, Sevilla,

Spain, February 2008.

[17] Pablo Suárez Hernández, Carl-Gustav Renmarker, Adam Dunkels, and Thiemo

Voigt. Increasing zigbee network lifetime with x-mac. In Proceedings of the

Workshop on Real-World Wireless Sensor Networks (RealWSN’08), Glasgow,

Scotland, United Kingdom.

[18] Zhi Ang Eu and Winston Khoon Guan Seah. Impact of Transmission Power and

Routing Algorithms in Designing Robust Wireless Sensor Networks. IEEE 18th

International Symposium on Personal, Indoor and Mobile Radio Communica-

tions (PIMRC ’07), 3-7 edition, September 2007.

BIBLIOGRAPHY 135

[19] Mohsen Sharifi, Saeed Pourroostaei, and Saeed Sedighian Kashi. Improving

availability of secure wireless sensor networks. In Proceedings of the 4th Inter-

national Conference: Sciences of Electronic, Technologies of Information and

Telecommunications (SETIT’07), Hammamet, Tunisia.

[20] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A.

Perillo. Middleware to support sensor network applications. In Network, IEEE,

pages 6–14, San Jose, California, February 2004.

[21] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight and

flexible operating system for tiny networked sensors. In Proceedings of the

1st Workshop on Embedded Networked Sensors (EmNets’04), Tampa, Florida,

USA.

[22] Moteiv Corporation. Tmote Sky - Datasheet, edition 1.04 edition, November

2006. http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf - Last visited

January 2009.

[23] Michael Baar, Enrico Köppe, Achim Liers, and Jochen Schiller. Poster

abstract: The scatterweb msb-430 platform for wireless sensor net-

works. In Contiki Workshop ’07, Kista, Stockholm, Sweden, March 2007.

http://www.sics.se/ adam/contiki-workshop-2007/baar07scatterweb.pdf - Last

visited January 2009.

[24] Atmel Corporation, San José, California, USA. AVR2016: RZRAVEN Hardware

User’s Guide, 8117d-avr-04/08 edition, 2008.

[25] Crossbow Technology Inc. MICAz datasheet, document part number: 6020-

0060-04 rev a edition, 2008.

[26] J. Schiller, H. Ritter, A. Liers, and T. Voigt. Scatterweb - low power nodes and

energy aware routing. In Proceedings of the Hawaii International Conference

on System Sciences, Hawaii, USA.

[27] Adam Dunkels. Programming Memory-Constrained Networked Embedded Sys-

tems. PhD thesis, Mälardalen University Press Dissertations, Västerås, Sweden,

February 2007. http://www.sics.se/ adam/dunkels07programming.pdf.

[28] Ravi Krishnan. Future of Embedded Systems Technology. Bcc Research Com-

pany, Wellesley, MA, USA, June 2005.

BIBLIOGRAPHY 136

[29] Carlo Alberto Boano and Sakhawat Hossen. Interconnection be-

tween 802.15.4 devices and ipv6: implications and existing approaches.

http://www.carloalbertoboano.com - Last visited: February 2009.

[30] IEEE. Wireless Personal Area Networks, ieee 802.15-01/469r2 edition, October

2001.

[31] Tim Gillman and Drew Gislason. Understanding the Zigbee Stack and Applica-

tion Profiles. EETimesChina, July 2007.

[32] Philip Levis and the TinyOS 2.x Working Group. Demo abstract: Tinyos 2.0.

In Proceedings of the 3rd International Conference on Embedded Networked

Sensor Systems (SenSys’05), San Diego, California, USA, November 2005.

[33] A. Boulis, C. Han, and M.B. Srivastava. Design and implementation of a frame-

work for efficient and programmable sensor networks. In Proceedings of the 1st

International Conference on Mobile Systems, Applications and Services (Mo-

biSys’03), San Francisco, CA, USA.

[34] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava.

A dynamic operating system for sensor nodes. In Proceedings of the 3rd in-

ternational conference on Mobile systems, applications, and services, Seattle,

Washington, USA.

[35] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt. Run-time

dynamic linking for reprogramming wireless sensor networks. In Proceedings

of the Fourth ACM Conference on Embedded Networked Sensor Systems (Sen-

Sys’06), Boulder, Colorado, USA, November 2006.

[36] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads:

Simplifying event-driven programming of memory-constrained embedded sys-

tems. In Proceedings of the 4th ACM Conference on Embedded Networked

Sensor Systems (SenSys’06), Boulder, Colorado, USA.

[37] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Using pro-

tothreads for sensor node programming. In Proceedings of the Workshop on

Real-World Wireless Sensor Networks (REALWSN’05), Stockholm, Sweden.

[38] Adam Dunkels. Rime - a lightweight layered communication stack for sensor

networks. In Proceedings of the European Conference on Wireless Sensor Net-

works (EWSN’07), Delft, The Netherlands.

BIBLIOGRAPHY 137

[39] Adam Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of the 1st

International Conference on Mobile Systems, Applications and Services (Mo-

biSys’03), San Francisco, CA, USA.

[40] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-

regulating algorithm for code propagation and maintenance in wireless sensor

networks. In Proceedings of the 1st Symposium on Networked System Design

and Implementation (NSDI’04), San Francisco, California, USA, March 2004.

[41] Fredrik Österlind, Adam Dunkels, Zhitao He, and Nicolas Tsiftes. Sensornet

checkpointing between simulated and deployed networks. In Proceedings of the

8th ACM/IEEE International Conference on Information Processing in Sensor

Networks (IPSN’09), demo session, San Francisco, USA, April 2009.

[42] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He. Software-

based on-line energy estimation for sensor nodes. In Proceedings of the 4th

Workshop on Embedded Networked Sensors (EmNets’07), Cork, Ireland.

[43] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He. Demo ab-

stract: Software-based sensor node energy estimation. In Proceedings of the

Fifth ACM Conference on Networked Embedded Sensor Systems (SenSys’07),

Sydney, Australia.

[44] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Ultra-

low power data storage for sensor networks. In Proceedings of the fifth Inter-

national Conference on Information Processing in Sensor Networks (IPSN’06),

Nashville, Tennessee, USA, April 2006.

[45] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt. Enabling large-

scale storage in sensor networks with the coffee file system. In Proceedings

of the 8th ACM/IEEE International Conference on Information Processing in

Sensor Networks (IPSN’09), San Francisco, USA, April 2009.

[46] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Österlind, and Thiemo

Voigt. Poster abstract: Mspsim - an extensible simulator for msp430-equipped

sensor boards. In Proceedings of the European Conference on Wireless Sensor

Networks (EWSN), Delft, The Netherlands, January 2007.

BIBLIOGRAPHY 138

[47] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo

Voigt. Cross-level simulation in cooja. In Proceedings of the European Con-

ference on Wireless Sensor Networks (EWSN), Delft, The Netherlands, January

2007.

[48] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo

Voigt. Cross-level sensor network simulation with cooja. In Proceedings of

the 2006 31st IEEE Conference on Local Computer Networks, Tampa, Florida,

USA, November 2006.

[49] Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes, Joakim Eriks-

son, and Niclas Finne. Sensornet checkpointing: Enabling repeatability in

testbeds and realism in simulators. In Proceedings of the 6th European Con-

ference on Wireless Sensor Networks (EWSN’09), Cork, Ireland, February 2009.

[50] Sensirion AG. SHT1x Humidity and Temperature Sensor datasheet, version 2.04

edition, May 2005. http://www.sensirion.com/images/getFile?id=25 - Last vis-

ited January 2009.

[51] Chipcon AS. Smart RF CC2420 datasheet - 2.4 GHz IEEE 802.15.4

/ ZigBee-Ready RF Transceiver (Rev. B), swrs041b edition, March 2007.

http://focus.ti.com/lit/ds/symlink/cc2420.pdf - Last visited January 2009.

[52] Freescale semiconductor Inc. MMA7260Q - XYZ Three-Axis Low g Acceleration

Sensor, Rev. 0, document number: mma7260qfs edition, 2005.

[53] Chipcon AS. CC1020 datasheet - Low-Power RF Transceiver

for Narrowband Systems (Rev. B), swrs046b edition, July 2008.

http://focus.ti.com/lit/ds/symlink/cc1020.pdf - Last visited January 2009.

[54] Marco Avvenuti, Paolo Corsini, Paolo Masci, and Alessio Vecchio. An appli-

cation adaptation layer for wireless sensor networks. In Pervasive and Mobile

Computing 3, pages 413–438, April 2007.

[55] Kay Römer, Oliver Kasten, and Friedemann Mattern. Middleware challenges for

wireless sensor networks. In Mobile Computing and Communications Review,

volume 6, pages 59–61, October 2002.

[56] Chien-Chung Shen, Chavalit Srisathapornphat, and Chaiporn Jaikaeo. Sensor

information networking architecture and applications. In Proceedings of the

International Workshop on Pervasive Computing (ICPP), Toronto, Canada.

BIBLIOGRAPHY 139

[57] Sam Madden and Joe Hellerstein and Wei Hong, Berkeley University, Califor-

nia, USA. TinyDB: In-Network Query Processing in TinyOS, version 0.4 edi-

tion, September 2003. http://telegraph.cs.berkeley.edu/tinydb/tinydb.pdf - Last

visited January 2009.

[58] Lucas Francisco Wanner, Arliones Stevert Hoeller Junior, Augusto Born

de Oliveira, and Antonio Augusto Fröhlich. Operating system support for data

acquisition in sensor networks. In IEEE Conference on Emerging Technologies

and Factory Automation, pages 582–585, September 2006.

[59] Wendi B. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient

communication protocol for wireless microsensor networks. In IEEE Transac-

tions on Wireless Communication, pages 660–670, October 2002.

[60] Andreas Lachenmann, Pedro José Marrón, Daniel Minder, and Kurt Rother-

mel. Meeting lifetime goals with energy levels. In Proceedings of the 5th ACM

Conference on Embedded Networked Sensor Systems (SenSys’07), Sydney, Aus-

tralia, November 2007.

[61] Bence Pásztor, Cecilia Mascolo, and Mirco Musolesi. Implementation of scar

using contiki. In Contiki Workshop ’07, Kista, Stockholm, Sweden, March 2007.

http://www.cl.cam.ac.uk/ bp296/papers/abstract.pdf - Last visited January 2009.

[62] Bence Pásztor, Mirco Musolesi, and Cecilia Mascolo. Opportunistic mobile sen-

sor data collection with scar. In Proceedings of IEEE International Conference

on Mobile Ad-hoc and Sensor Systems (MASS’07), Pisa, Italy, October 2007.

[63] Cecilia Mascolo and Mirco Musolesi. Scar: Context-aware adaptive routing

in delay tolerant mobile sensor networks. In Delay Tolerant Mobile Networks

Symposium of International Wireless Communications and Mobile Computing

Conference (IWCMC’06), Vancouver, Canada, July 2006.

[64] Duracell. MN1500 battery online data sheet, 2005.

http://www.duracell.com/oem/Pdf/MN1500.pdf - Last visited January 2009.

[65] Debashis Panigrahi, Carla Chiasserini, Sujit Dey, Ramesh Rao, Anand Raghu-

nathan, and Kanishka Lahiri. Battery life estimation of mobile embedded sys-

tems. In Proceedings of the Fourteenth International Conference on VLSI De-

sign, Bangalore, India, March 2001.

BIBLIOGRAPHY 140

[66] Guoqiang Mao, Baris Fidan, and Brian D.O. Anderson. Wireless

sensor network localization techniques. http://www.ee.usyd.edu.au/ guo-

qiang/papers/Mao06Wireless.pdf. Last visited January 2009, 2006.

[67] Radu Stoleru, John A. Stankovic, and Sang Son. Robust node localization for

wireless sensor networks. In Proceedings of the 4th Workshop on Embedded

Networked Sensors (EmNets’07), Cork, Ireland, June 2007.

[68] M. Doyle, T.F. Fuller, and J.S. Newman. Modeling of galvanostatic charge and

discharge of the lithium/polymer/insertion cell, volume 140 of 6. Journal of the

Electrochemical Society, Pennington, NJ, USA, electrochemical society edition,

1993.

[69] Battery voltage and current. Tech note TN5, Trace Engineering, Arlington, WA,

July 1996. http://www.xantrex.com/web/id/329/DocServe.aspx - Last visited

January 2009.

[70] Hengchang Liu, Leo Selavo, and Jack A. Stankovic. Seedtv: Deployment-time

validation for wireless sensor networks. In Proceedings of the 4th workshop on

Embedded networked sensor (EmNets’07), Cork, Ireland, June 2007.

[71] Koen Langendoen, Aline Baggio, and Otto Visser. Murphy loves potatoes: ex-

periences from a pilot sensor network deployment in precision agriculture. In

Proceedings of the 20th International Parallel and Distributed Processing Sym-

posium (IPDPS’06), Rhodes Island, Greece, April 2006.

[72] Jan Beutel, Matthias Dyer, Mustafa Yücel, and Lothar Thiele. Development and

test with the deployment-support network. In Proceedings of the 4th European

Conference on Wireless Sensor Networks (EWSN’07), Delft, The Netherlands,

January 2007.

[73] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. Under-

standing the causes of packet delivery success and failure in dense wireless sen-

sor networks. In Proceedings of the 4th International Conference on Embedded

Networked Sensor Systems, Boulder, Colorado, USA, October 2006.

[74] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner,

Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and

BIBLIOGRAPHY 141

Wei Hong. A macroscope in the redwoods. In Proceedings of the 3rd Inter-

national Conference on Embedded Networked Sensor Systems (SenSys’05), San

Diego, California, USA, November 2005.

[75] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler.

Lessons from a sensor network expedition. In Proceedings of the First European

Workshop on Sensor Networks (EWSN’04), Berlin, Germany, January 2004.

[76] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay Taneja,

Gilman Tolle, Kamin Whitehouse, and David Culler. Trio: Enabling sustainable

and scalable outdoor wireless sensor network deployments. In Proceedings of

the fifth International Conference on Information Processing in Sensor Networks

(IPSN’06), Nashville, Tennessee, USA, April 2006.

[77] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler,

and Deborah Estrin. Sympathy for the sensor network debugger. In Proceedings

of the 3rd international conference on Embedded Networked Sensor Systems

(SenSys’05), San Diego, California, USA, November 2005.

[78] Jinghao Li, Yuebin Bai, Haixing Ji, Jihong Ma, Yong Tian, and Depei Qian.

Power: Planning and deployment platform for wireless sensor networks. In Pro-

ceedings of the Fifth International Conference on Grid and Cooperative Com-

puting Workshops (GCCW’06), Hunan, China, October 2006.

[79] Gilman Tolle and David Culler. Snms: Application-cooperative management for

wireless sensor networks. In Proceedings of the 2nd international conference on

Embedded networked sensor systems (SenSys’04), Baltimore, Maryland, USA,

November 2004.

[80] Crossbow Technology Inc. MOTE-VIEW 1.0 Quick Start Guide,

application note 7410-0008-02, rev. a edition, March 2005.

http://www.xbow.com/Technology/UserInterface.aspx.

[81] Tzu-Che Huang, Hung-Ren Lai, and Cheng-Hsien Ku.

A deployment procedure for wireless sensor networks.

http://acnlab.csie.ncu.edu.tw/wasn06/CR2/p19.pdf.

[82] Jan Beutel, Matthias Dyer, Lennart Meier, Matthias Ringwald, and Lothar

Thiele. Next-generation deployment support for sensor networks. In TIK-Report

BIBLIOGRAPHY 142

No. 207, Computer Engineering and Networks Lab Swiss Federal Institute of

Technology (ETH), 8092 Zurich, Switzerland, 2004.

[83] Niclas Finne, Joakim Eriksson, Adam Dunkels, and Thiemo Voigt. Experiences

from two sensor network deployments: self-monitoring and self-configuration

keys to success. In Proceedings of the 6th International Conference on wired and

wireless Internet Communications (WWIC’08), Tampere, Finland, May 2008.

[84] Ertan Onur, Cem Ersoy, and Hakan Deliç. On the quality of deployment in

surveillance wireless sensor networks. In Proceedings of the 8th International

Conference on Telecommunications (ConTEL’05), Zagreb, Croatia, June 2005.

[85] Ertan Onur, Cem Ersoy, Hakan Deliç, and Lale Akarun. Surveillance Wireless

Sensor Networks: Deployment Quality Analysis, volume 21 of 6. IEEE Network,

November-December 2007. ISSN: 0890-8044.

[86] Benyuan Liu, Peter Brass, Olivier Dousse, Philippe Nain, and Don Towsley.

Mobility improves coverage of sensor networks. In Proceedings of the Sixth

ACM International Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc’05), UrbanaChampaign, Illinois, USA, May 2005.

[87] Rabie Ramadan, Khaled Abdelghany, and Hesham El-Rewini. Sensdep: A de-

sign tool for the deployment of heterogeneous sensing systems. In Proceedings

of the Second IEEE Workshop on Dependability and Security in Sensor Networks

and Systems (DSSNS’06), pages 44–53, April 2006.

[88] Emiliano Miluzzo, Nicholas D. Lane, Andrew T. Campbell, and Reza Olfati-

Saber. Calibree: A self-calibration system for mobile sensor networks. In Pro-

ceedings of the 4th IEEE International Conference on Distributed Computing in

Sensor Systems (DCOSS’08), Santorini Island, Greece, June 2008.

[89] Jingbo Sun and Rachel Cardell Oliver. An experimental evaluation of temporal

characteristics of communication links in outdoor sensor networks. In Proceed-

ings of the second Workshop on Real-World Wireless Sensor Networks (REAL-

WSN’06), Uppsala, Sweden, June 2006.

[90] Matthew M. Holland, Ryan G. Aures, and Wendi B. Heinzelman. Experimental

investigation of radio performance in wireless sensor networks. In Proceedings

of the 2nd IEEE Workshop on Wireless Mesh Networks (WiMesh’06), Reston,

Virginia, USA, September 2006.

BIBLIOGRAPHY 143

[91] Giuseppe Anastasi, Alessio Falchi, Andrea Passarella, Marco Conti, and Enrico

Gregori. Performance measurements of motes sensor networks. In Proceedings

of the 7th ACM international symposium on Modeling, analysis and simulation

of wireless and mobile systems (MSWiM’04), Venice, Italy, October 2004.

[92] Kenneth Bannister, Gianni Giorgetti, and Sandeep K.S. Gupta. Wireless sensor

networking for hot applications: Effects of temperature on signal strength, data

collection and localization. In Proceedings of the fifth Workshop on Embedded

Networked Sensors (HotEmNets’08), Charlottesville, Virginia, USA, June 2008.

[93] Razvan Musaloiu-E. and Andreas Terzis. Minimizing the Effect of WiFi Inter-

ference in 802.15.4 Wireless Sensor Networks. IJSNet, Vol. 3, No. 1, 2008.

[94] Andreas Meier, Tobias Rein, Jan Beutel, and Lothar Thiele. Coping with unreli-

able channels: Efficient link estimation for low-power wireless sensor networks.

In Proceedings of the 5th International Conference on Networked Sensing Sys-

tems (INSS’08), Kanazawa, Japan, June 2008.

[95] Kannan Srinivasan and Philip Levis. Rssi is under appreciated. In Proceedings of

the Third Workshop on Embedded Networked Sensors (EmNets’06), Cambridge,

MA, USA, May 2006.

[96] HyungJune Lee, Alberto Cerpa, and Philip Levis. Improving wireless simulation

through noise modeling. In Proceedings of the 6th international conference

on Information processing in sensor networks table of contents, pages 21–30,

Cambridge, Massachusetts, USA, April 2007.

[97] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. Under-

standing the causes of packet delivery success and failure in dense wireless sen-

sor networks. In Proceedings of the 4th ACM Conference on Embedded Net-

worked Sensor Systems (SenSys’06), pages 419–420, Boulder, Colorado, USA,

November 2006.

[98] Shan Lin, Jingbin Zhang, Gang Zhou, Lin Gu, Tian He, and John A. Stankovic.

Atpc: Adaptive transmission power control for wireless sensor networks. In Pro-

ceedings of the 4th ACM Conference on Embedded Networked Sensor Systems

(SenSys’06), Boulder, Colorado, USA, November 2006.

BIBLIOGRAPHY 144

[99] Lifeng Sang and Anish Arora. Spatial signatures for lightweight security in

wireless sensor networks. In Proceedings of the 27th Conference on Computer

Communications IEEE (INFOCOM’08), pages 2137–2145, April 2008.

[100] Shuo Xiao, Ashay Dhamdhere, Vijay Sivaraman, and Alison Burdett. Transmis-

sion power control in body area sensor networks for healthcare monitoring. In

IEEE Journal on Selected Areas in Communications, volume 27, pages 37–48,

January 2009.

[101] Huang Chen, Cao Zhichao, and Sun Tao. Waterwell: Online water mon-

itoring using wireless sensor networks. experiment report on link qual-

ity. The Royal Institute of Technology (KTH), Stockholm, October 2008.

http://www.tslab.ssvl.kth.se/csd/projects/0821006/ - Last visited January 2009.

[102] Niels Reijers, Gertjan Halkes, and Koen Langendoen. Link layer measurements

in sensor networks. In Proceedings of the 2004 IEEE International Conference

on Mobile Ad-hoc and Sensor Systems, pages 224–234, October 2004.

[103] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance

in dense wireless sensor networks. In Proceedings of the First ACM Conference

on Embedded Networked Sensor Systems (SenSys’03), pages 1–13, Los Angeles,

CA, USA, November 2003.

[104] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Impact

of radio irregularity on wireless sensor networks. In Proceedings of Interna-

tional Conference on Mobile systems, applications, and services (MobiSYS’04),

Boston, Massachusetts, USA, June 2004.

[105] CRC Industries Europe NV, Zele, Belgium. CRC MINUS 50 - Tech-

nical datasheet, 1056703079601 edition, September 2003. Available at:

http://www.crceurope.com/wwwcrc/tds/TCI3%20MINUS50.PDF - Last vis-

ited: January 2009.

[106] David M. Doolina and Nicholas Sitara. Wireless sensors for wildfire monitor-

ing. In Sensors and Smart Structures Technologies for Civil, Mechanical, and

Aerospace Systems, pages 477–484. Masayoshi Tomizuka, May 2005.

[107] Benji Capsuto and Jeff Frolik. A system to monitor signal fade due

to weather phenomena for outdoor sensor systems. In Proceedings of

BIBLIOGRAPHY 145

the Fifth International Conference on Information Processing in Sensor

Networks (IPSN’06), Nashville, TN, USA, April 2006. Available at:

http://www.eng.yale.edu/enalab/ipsn06/demo8.pdf - Last visited: January 2009.

[108] John Thelen, Daan Goense, and Koen Langendoen. Radio wave propagation in

potato fields. In Proceedings of the 1st workshop on wireless network measure-

ment, Riva del Garda, Italy, April 2005.

[109] AFAR Communications Inc. 900 mhz versus 2.4 ghz in long distance links. Web

site. Available at: http://www.afar.net/tutorials/900-mhz-versus-2.4-ghz/ - Last

visited: January 2009.

[110] CWNP certifications. Rain fade margin. Web site. Available at: http :

//www.cwnp.com/tools/wificalculator/notesrainfade.html - Last vis-

ited: January 2009.

[111] Michwave Technologies Inc. Radio propagation: What effect does

rain or fog have on performance? Web site. Available at:

http://www.michwave.com/bbnetwork/faq/radiopropagation.htm - Last visited:

January 2009.

[112] Barry McLarnon. Vhf/uhf/microwave radio propagation: A primer for

digital experimenters. Web site. Available at: http://users.ictp.it/ ra-

dionet/ghana1998/LINKLOSS/INDEX.HTM - Last visited: January 2009.

[113] Covad Communications Group. Wireless networking

backgrounder. Web site, March 2007. Available at:

http://www.covadwireless.com/documents/wirelessWhitepaper.pdf - Last

visited: January 2009.

[114] Philip Levis and David Culler. Maté: A tiny virtual machine for sensor net-

works. In Proceedings of the 10th international conference on Architectural

support for programming languages and operating systems, pages 85–95, San

Jose, California, October 2002.

[115] Matthias Dyer, Jan Beutel, Lothar Thiele, Thomas Kalt, Patrice Oehen, Kevin

Martin, and Philipp Blum. Deployment support network - a toolkit for the de-

velopment of wsns. In Proceedings of the 4th European Conference on Wireless

Sensor Networks (EWSN’07), Delft, The Netherlands, January 2007.

BIBLIOGRAPHY 146

[116] José Pinto, Alexandre Sousa, Paulo Lebres, Gil Manuel Gonçalves, and João

Sousa. Monsense - application for deployment, monitoring and control of wire-

less sensor networks. In Proceedings of the second Workshop on Real-World

Wireless Sensor Networks (REALWSN’06), Uppsala, Sweden, June 2006.

[117] Muhammad Hamad Alizai, Olaf Landsiedel, Klaus Wehrle, and Alexander

Becher. Challenges in short-term wireless link quality estimation. In Pro-

ceedings of Fifth Workshop on Embedded Networked Sensors (Hot EmNets’08),

Chalottesville, USA, August 2008.

[118] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip Levis. Four-

bit wireless link estimation. In Proceedings of the Sixth Workshop on Hot Topics

in Networks (HotNets-VI), Atlanta, GA, USA, November 2007.

[119] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling ultra-low

power wireless research. In Proceedings of the 4th international symposium

on Information processing in sensor networks table of contents, Los Angeles,

California, USA, April 2005.

[120] Carlo Alberto Boano, Thiemo Voigt, Adam Dunkels, Fredrik Österlind, Nicolas

Tsiftes, Luca Mottola, and Pablo Hernández Suárez. Exploiting the lqi variance

for rapid channel quality assessment. In Proceedings of the 8th ACM/IEEE Inter-

national Conference on Information Processing in Sensor Networks (IPSN’09),

San Francisco, USA, April 2009.

