
E-Cube: Towards a First Benchmarking Facility
for Battery-Free Systems

Markus Schuß
markus.schuss@tugraz.at

Graz University of Technology
Graz, Austria

Carlo Alberto Boano
cboano@tugraz.at

Graz University of Technology
Graz, Austria

ABSTRACT
IoT devices are commonly powered by batteries: even rechargeable
ones wear out and must be replaced. Hence, in a future with billions
of IoT devices, the disposal of their batteries represents a looming
environmental disaster. Battery-free systems have the potential to
address this key sustainability issue: by relying on energy harvested
from ambient sources, IoT devices could, in theory, operate in perpe-
tuity, require zero maintenance, and produce less waste. However,
even though research on battery-free systems has bloomed in recent
years, the community still lacks public testbeds and a well-defined
yardstick to benchmark the performance of various solutions. As a
result, battery-free solutions have rarely been compared under the
same conditions, which hinders a comprehensive understanding
of the best-performing approach in specific settings, hampering
industrial adoption. To fill this gap, we move our first steps towards
the design of E-Cube: the first fully-automated, open, and low-cost
benchmarking facility for battery-free IoT systems. We present
E-Cube’s design and architecture, showing how it can be used to
facilitate a competition evaluating the performance of solutions
running on devices powered by intermittent sources of energy.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Benchmark, Energy harvesting, E-Cube, Intermittent computing,
Internet of Things, Sensor nodes, Testbed infrastructure, Wireless.

ACM Reference Format:
Markus Schuß and Carlo Alberto Boano. 2024. E-Cube: Towards a First
Benchmarking Facility for Battery-Free Systems. In International Confer-
ence on Information Technology for Social Good (GoodIT ’24), September
04–06, 2024, Bremen, Germany. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3677525.3678688

1 INTRODUCTION
Up to 30 billion connected devices will be deployed by 2030, many of
which powered by batteries [29]. Replacing and disposing batteries
at this volume is impractical and expensive; moreover, modern
battery cells include a wide range of toxic chemicals including
heavy metals [18], which represents a key sustainability issue [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GoodIT ’24, September 04–06, 2024, Bremen, Germany
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1094-0/24/09
https://doi.org/10.1145/3677525.3678688

To alleviate this problem, the development of battery-free systems
has gained traction [2]. While, in theory, such systems are pow-
ered perpetually by energy harvested from ambient sources such
as light, temperature, and vibration, the intermittent nature of such
power sources means that devices rely exclusively on virtually
maintenance-free capacitors for energy storage [11, 22]. Battery-
free systems are typically designed using two approaches: (i) us-
ing large capacitors to buffer energy to let the system operate
continuously over a longer period of time, or (ii) accepting the
intermittently-powered state of the device by relying solely on a
small capacitor and operating only when energy is available. While
the former seems to be the obvious path forward (as existing appli-
cations can be migrated seemingly with little effort), the low energy
density of capacitors compared to conventional batteries means
that such devices will often be larger than their battery-equipped
counterpart. The alternative solution of only operating when power
is plenty has drawbacks in terms of responsiveness, as it cannot be
guaranteed that an external event is correctly detected should the
device not be operational at the time in which the event occurs.
Problem statement. Several solutions have been proposed to
improve the performance and usability of battery-free systems [9,
28]. However, due to the lack of a unified testing methodology, an
agreed-upon hardware platform, and readily-available tools, such
solutions have rarely been compared under the same conditions.
Even worse, device-to-device differences in key parts such as capac-
itors can cause as much as 48% variation in system lifetime [7], ne-
cessitating experiments to be run on the exact same hardware (HW)
to be truly comparable. To enable the quantitative comparison of so-
lutions under the same conditions (i.e., to facilitate benchmarking),
one requires an open testbed providing a low barrier of entry.
Lack of an open and low-cost testbed.While some testbeds have been
set up by research groups [12], their often closed nature and the
relative complexity of their specialized feature set hinder their use
for quantitative comparisons. As shown in other fields, e.g., in the
context of low-power wireless (LPW) systems, open testbeds [1,
20, 24, 31] are invaluable not only for development, but also for
comparing approaches. Some tools [15, 23] tailored to battery-free
systems have been made available as open-source software and
HW, but, alone, they only solve a small part of the benchmarking
problem – just the recording and replaying of energy traces.
Lack of automation. A benchmark for battery-free systems requires
more than readily-available HW: it needs an agreed-upon method-
ology. However, this entails the specification of an application (i.e.,
the task that needs to be implemented) and performance metrics
(to determine how well the solution performs). The benchmarking
facility should have the ability to configure its HW (e.g., connected
peripherals such as sensors, memory, or actuators) and software

https://orcid.org/0000-0002-8651-3725
https://orcid.org/0000-0001-7647-3734
https://doi.org/10.1145/3677525.3678688
https://doi.org/10.1145/3677525.3678688
https://doi.org/10.1145/3677525.3678688


GoodIT ’24, September 04–06, 2024, Bremen, Germany M. Schuß et al.

(e.g., the scripts computing themetrics) as a function of the provided
specifications dynamically without manual intervention. Moreover,
the nature and amount of energy available must be accurately and
repeatably replayed from a recorded trace to evaluate the perfor-
mance of solutions for different real-world conditions.
Our contributions. We present E-Cube, an open benchmark fa-
cility encompassing (i) a testbed infrastructure and (ii) a fully-
automated workflow easily accessible via a public web interface.
Built on top of D-Cube [13], an open-source benchmark that we
created to evaluate the dependability of LPW protocols [26, 27],
E-Cube is a solution tailored to evaluate the performance of battery-
free systems. Similar to our previous effort leveraging D-Cube to
organize a series of competitions in which we benchmarked the
reliability and efficiency of LPW protocols [6], our goal is now to
evaluate the performance of battery-free solutions, so to understand
which ones meet best the requirements of a given IoT application.
After describing E-Cube’s low-cost testbed infrastructure, we imple-
ment a proof-of-concept benchmark using E-Cube to automatically
evaluate the performance of a given solution. A user just needs
to upload a binary firmware via an intuitive web interface, and
can seamlessly obtain both the raw measurements and the derived
performance metrics. We argue that E-Cube’s high degree of au-
tomation will facilitate the creation of a competition to compare
the performance of battery-free solutions under the same settings.

2 RELATEDWORK
Until now, battery-free systems have been developed and tested on
a wide range of HW platforms with the aid of various purpose-built
tools; however, no benchmark for battery-free systems exists yet.
We argue that efforts similar to those recently undertaken in the
LPW networking field [5, 27] need to be pursued to tackle this issue.
Testing LPW systems. In order to test the performance of various
LPW protocols, several open testbeds [1, 20, 31] have provided
the means to compare a plethora of solutions running on the same
experimental setup. However, using the same testbed does not imply
that multiple test runs are conducted in the same way: this requires
an agreed-upon methodology (e.g., users may select different traffic
loads or extract performance metrics differently [5, 17]).
Benchmarking LPW systems. To bring in a common method-
ology, we have created D-Cube, the first benchmark [27] for LPW
systems featuring a fully-automated testbed infrastructure. Now
publicly available [13], D-Cube has been the foundation for run-
ning the EWSN dependability competition series [6], which pro-
vided – for the first time – a level playing field for researchers and
practitioners developing dependable LPW protocols. The benefit of
such competitions is that experts in the field are actively motivated
in pushing the performance of their solutions to the limit: this can
trigger major enhancements to existing approaches [16] or even
brand new ideas [19, 21]. In this regard, D-Cube’s ability to measure
key performance metrics in HW (e.g., power consumption, reliabil-
ity, and latency) by accurately detecting and time-stamping GPIO
events using network-wide time synchronisation played a crucial
role in guaranteeing the objectivity of the results [26]. D-Cube also
featured an asynchronous I2C mailbox with an interrupt line (to
enable communication between the testbed infrastructure and the
target node at run-time), as well as the ability of building and ap-
plying patches to binary files [24, 27]. These features allow not

only to automatically change traffic patterns and loads, node iden-
tities, as well as message payloads, but to also change user-defined
protocol parameters on a per-node and per-experiment basis. Fi-
nally, D-Cube also allowed to automatically return a performance
report containing raw measurements collected in HW, custom per-
formance metrics, and the relative performance compared to other
solutions for specific settings (i.e., a leaderboard). Unfortunately,
D-Cube cannot be directly used to benchmark battery-free systems,
as it is unable to control the supply voltage (currently, voltage is
being monitored only) and as it relies on runtime communication
via the I2C mailbox (which leaks current and hence biases results).
Testing battery-free systems. A few tools for testing battery-
free and intermittent computing systems exist. One of the most
advanced is Shepherd [12], a testbed allowing to record energy
traces in the field and to replay them using the same HW. Multiple
nodes can synchronize their operation to also run experiments with
networked systems. Unfortunately – to the best of our knowledge –
no instance of Shepherd is currently open to the public or intended
for any automated form of benchmarking. Shepherd’s design is cen-
tered around custom add-ons that have to be manually assembled
for each experiment. Moreover, Shepherd does not provide a user
interface and expects users to manually orchestrate experiments by
running scripts on one or more BeagleBone single-board computers
(SBC). Another popular tool for battery-free systems is Ekho [15],
which provides a USB device capable of logging or replaying an
energy trace. While this seems to be a perfect solution to be utilized
as part of a benchmarking infrastructure, the device is built on
older and hard-to-get components. Moreover, for benchmarking
purposes, the ability to capture energy traces using the same HW is
not necessary: thus, in principle, one can opt for a simpler design.
In summary, existing tools for battery-free systems are insufficient
to benchmark performance. In this paper, we fill this gap by conduct-
ing a similar effort to D-Cube, but tailored to battery-free systems.

3 REQUIREMENTS & CHALLENGES
We discuss next the requirements of a benchmarking facility for
battery-free systems, together with the associated challenges that
need to be tackled to come up with a concrete design instance.
R1: Low-cost. To evaluate the performance of battery-free systems,
a source measurement unit (SMU) is necessary to provide a voltage
curve while concurrently measuring the current consumption of
the system. Unfortunately, such SMUs – while very accurate – can
cost up to 9000€ for a single device. Tools such as Ekho and testbeds
such as Shepherd are cheaper, but their cost is still relatively high,
as they are meant to not only emulate a power source by replaying
an energy trace, but also to record such traces in the field. A key
challenge is hence to find a device with the versatility and accuracy
akin to an SMU, but at a significantly lower cost – without adding
costly features that are not needed for a benchmarking use case.
R2: Repeatability.While a low-cost solution facilitates replication
across multiple sites, this must not come at the price of lower
repeatability. For example, sampling the current consumption at
a high speed is desirable for the emulation of a feedback system,
but is secondary to the accurate replaying of voltage traces. Hence,
the chosen tool replaying energy traces should offer an accurate
control of the supplied voltage, and not rely on any proprietary or
complex format of the traces to simplify reuse on different HW.



E-Cube: Towards a First Benchmarking Facility for Battery-Free Systems GoodIT ’24, September 04–06, 2024, Bremen, Germany
Te

st
b

e
d

 
In

fr
as

tr
u

ct
u

re

Server-side Components

Observer Module

DCM uSMUDCM uSMU
Observer ModuleObserver Module

DCM uSMUDCM uSMUDCM uSMU

Target device Target device

Broker Evaluation Service
UI DB Scheduler

...

(a) Architecture

Target 
Device

(MSP430FR5994)

Evaluation
Script

Input Parameters

Firmware

Settings
(e.g., duration)

Energy Trace

Challenges

Input Parameters

Firmware

Settings
(e.g., duration)

Energy Trace

Challenges

Intermediate Data

Raw Measurements
(Voltage and Current)

Computed Solutions
(from FRAM)

Optional Serial Logs

Intermediate Data

Raw Measurements
(Voltage and Current)

Computed Solutions
(from FRAM)

Optional Serial Logs

Outputs

Benchmark Report
(per challenge/solution)

Perf. Metrics
(summarized results)

Overall Score

Outputs

Benchmark Report
(per challenge/solution)

Perf. Metrics
(summarized results)

Overall Score

(b) Workflow of an experiment

Observer Module

Tools and Scripts

DCM Server

uSMU

REST Client

Tools and Scripts

DCM Server

uSMU

REST Client

Observer Module

Tools and Scripts

DCM Server

uSMU

REST Client

Target Device

Debug Probe

MSP430FR5994

Analog Switch

I2C Memory

Analog Switches

Target Device

Debug Probe

MSP430FR5994

Analog Switch

I2C Memory

Analog Switches

Server-side 
Components

Scheduler

AMQP Broker

DCM Client

REST API

Scheduler

AMQP Broker

DCM Client

REST API

Server-side 
Components

Scheduler

AMQP Broker

DCM Client

REST API

(c) Components and their relationships
Figure 1: E-Cube’s high-level architecture split between the server-side components andmultiple observermodules (a), workflow
for the execution and evaluation of an experiment (b), and the connectivity between components during an experiment (c).

R3: Generality and HW-agnostic design. The benchmarking
facility should be able to emulate any energy source (e.g., kinetic,
RF, solar, temperature) and support any target platform (especially
popular ones in the community, such as the MSP430FR series).
Moreover, the facility should be able to support and remotely con-
figure any application-specific peripheral (e.g., sensors, memory, or
actuators) without need for manual intervention.
R4: Automation. To enable an objective comparison of different
solutions, the benchmarking facility should use a unified testing
methodology. That is, one should be able to specify a concrete ap-
plication (e.g., the task performed by the system, the employed
HW, and the supplied energy trace), as well as performance met-
ric(s). Once the benchmark is defined, the facility should be able
to automatically set up a test run and all involved HW (to mini-
mize unwanted mistakes and differences in the setup), as well as
autonomously compute the defined performance metric(s). That is,
the defined benchmark should be executed on the testbed facility
with a high degree of automation w.r.t. both setup and evaluation.
R5: Public availability and exposure. The creation of a bench-
mark facility tackling the previous challenges does not guarantee a
wide adoption. Merely using the facility to re-run existing solutions
from prior publications is also not an option, as many solutions
need to be adapted to both the benchmarked application and em-
ployed HW, which requires expert knowledge. As learned from our
past D-Cube effort, it is important to make the facility open to the
public and to also organize initiatives (e.g., competitions) involving
leading researchers and practitioners from academia and industry.

4 E-CUBE: DESIGN
We present next the design of E-Cube, a benchmarking facility for
battery-free systems that meets the requirements listed in Sect. 3.
Before explaining E-Cube’s architecture (Sect. 4.3), we define a sam-
ple benchmark to outline the role of each component (Sect. 4.1),
and discuss how we base the facility’s design on D-Cube (Sect. 4.2).

4.1 Benchmark Example: Hashcash
While E-Cube is designed to support a wide range of applications
and to be agnostic to the energy supply and HW platform, we
use a simple benchmark as running example to explain its inner
working. Specifically, we define a benchmark to assess the compu-
tational overhead of intermittent computing solutions. We leverage
hashcash [3], a proof-of-work algorithm to prove that a device
(an MSP-EXP430FR5994 Launchpad) has solved a computationally-
expensive task given a configurable difficulty – which we refer to as
an hashcash challenge. The challenge’s difficulty is configurable to
evaluate the ability of the solution to deal with different task lengths
despite interruptions in the power supply. To support this bench-
mark, E-Cube needs to be able to interact with the target device to

provide it with the challenges to be solved, as well as to record any
solutions provided by the device. In general, there are two ways to
tackle this problem: (i) at runtime via a shared interface with the
device such as UART or I2C, or (ii) before and after the execution of
the experiment. For example, D-Cube utilizes the first approach via
a shared mailbox. However, any connection between the target de-
vice and testbed infrastructure may result in a small leakage current.
We hence design E-Cube following the second approach. As shown
in Fig. 1b, each experiment involves a set of input parameters such
as the firmware, energy trace, as well as the number and difficulty of
the challenges. Before an experiment, E-Cube stores a configurable
amount of challenges of varying difficulty into FRAM, and hands
over exclusive control to the target device during an experiment.
During execution, E-Cube collects the energy trace’s set voltage
and measured current. After the experiment, E-Cube automatically
retrieves the solutions computed by the target device from FRAM
along with optionally-enabled serial logs from the target device
(i.e., any printf output). Moreover, after the completion of the
experiment, a script on the server (run by the evaluation service)
takes the collected data and automatically verifies all solutions to
determine if they are correct. It then creates a human-readable PDF
report breaking down each solution and matching challenge, as
well as highlighting any incorrect solution. In addition, a simpler
breakdown of the number of correct and incorrect challenges per
difficulty is provided and, finally, all correct and incorrect solutions
are weighted with their difficulty to provide a single overall score
that can be used for ranking the performance.

4.2 From D-Cube to E-Cube
E-Cube is built on top of the open-source D-Cube [25], which al-
lows us to re-purpose its automation features while adapting the
benchmarking process to the requirements of battery-free systems.
While D-Cube is built using custom HW facilitating the measure-
ment of the energy consumed by a device, it cannot change the
supply voltage to replay energy traces. As such, one still needs to
find a low-cost SMU-like device to reproduce energy traces.
By design, in D-Cube [27] it is relatively simple to replace individ-
ual steps of a benchmark. We hence adapt D-Cube’s scheduler and
evaluation scripts to support the type of battery-free benchmarks
E-Cube is designed for. However, the functionality responsible for
executing the experiment in HW had to be rebuilt mostly from the
ground up. The latter encompasses changes such as a completely
new energy supply and profiling unit built on top of the exist-
ing open-source 𝜇SMU [30], as well as the switch from D-Cube’s
mailbox system to an exclusive-access I2C FRAM memory.

4.3 Architecture
Fig. 1a shows the architecture of E-Cube split into (i) testbed in-
frastructure and (ii) server-side components. The former consists of



GoodIT ’24, September 04–06, 2024, Bremen, Germany M. Schuß et al.

0 20 40 60
Time [s]

0

1

2

3

Vo
lta

ge
 [V

] Voltage Current

0

1

2

Cu
rre

nt
 [m

A]

(a) Energy Trace & Measurement (b) Benchmark Report
Figure 2: Example outputs of E-Cube for the hashcash bench-
mark. (a) Replayed voltage curve from an energy trace
and measured current consumption of the target device.
(b) Human-readable PDF report (cropped).

observer modules which execute the experiment on a target device.
The latter are hosted on a central server and handle the interaction
with the user, as well as the communication with the observers.
Testbed infrastructure. Each observer module consists of an off-
the-shelf Raspberry Pi (RPI) SBC, an open-source 𝜇SMU [30], and a
few analog switches. To ensure that E-Cube can be used with a wide
variety of target devices, we rely on USB for programming. Most
development boards already come with an onboard debug probe,
including the MSP-EXP430FR5994 Lauchpad used as target devices.
Jumpers on the device allow to electrically disconnect parts such as
the debug probe. Instead of manually opening and closing jumpers,
E-Cube uses analog switches directly controlled by the GPIOs of the
RPI. For example, one can connect the debug probe only during the
programming phase, while disconnecting it during the execution
of the experiment to avoid leakage. This would otherwise cause
significant errors in the replay of energy traces, and it is the reason
why E-Cube – unlike D-Cube – forgoes runtime communication.
Server-side components. E-Cube’s server-side components con-
sist of: (i) a user interface (UI), (ii) two databases (DB) to store the
experiments and collected measurements, (iii) a message broker
handling communication, (iv) a scheduler responsible of executing
experiments, and (v) an evaluation service computing the perfor-
mance metrics. Most communication in E-Cube utilizes a variant
of D-Cube’s messaging protocol (DCM), which utilizes the broker
to relay messages implementing remote procedure calls with a
server exposing functionality and a client remotely calling these
functions. As shown in Fig. 1c, each observer module starts a DCM
server which handles commands from the scheduler such as turn-
ing the device on or off. Commands requiring larger payloads use a
REST API to download the required data, such as the csv-formatted
energy trace (to be replayed via the 𝜇SMU). DCM implements a
strict separation of concerns pattern, allowing the scheduler to
implement the high-level flow of an experiment (e.g., flashing the
provided firmware). The observer module thus does not need to
know the order of steps required for a given experiment, but only
how to execute each step on a low level (e.g., the location, name, and
arguments of the executable needed to program the target device).

5 E-CUBE: PROOF-OF-CONCEPT
We next implement the benchmark example presented in Sect. 4.1
using E-Cube as well as a simple solution. This way, we show that
E-Cube indeed satisfies the requirements listed in Sect. 3.
Automation. E-Cube allows us to upload a firmware and to specify
the experiment’s duration and energy trace. It then automatically
returns not only the raw measurements (see an excerpt of these
in Fig. 2a), but also a human-readable report (see Fig. 2b) and an
overall score to rank the solution against all others.

Repeatability. As for any benchmark, it is vital that results are
repeatable, i.e., that given the same inputs (firmware, energy trace,
etc.) E-Cube derives the same result. However, due to variability in
the components caused by environmental changes, there remains
an inherent variance between experiments. To quantify it, we run
a series of ten consecutive experiments with the aforementioned
firmware, energy trace, and challenges for 60 seconds, and obtain
identical results for each run (in terms of number of solved chal-
lenges). We repeat the experiment over several days to verify that
the environment did not affect the outcome. Due to the coarse
resolution of hashcash – one challenge takes several milliseconds
to seconds depending on the difficulty – we also run a task that
allows for a higher granularity. We hence add printf output to our
firmware, and also collect the serial output throughout the 60 sec-
onds experiment. We can see that the final line printed is off by
merely a few characters at a baud rate of 9600 (i.e., a few hundred
microseconds), which confirms that our variance is minimal.
Generality. The employed 𝜇SMU can power devices with a wide
variety of energy traces, and building on D-Cube’s target-agnostic
design only requires a USB connection for programming as well as
a few pins for communication and power. This enables E-Cube to
benchmark a wide range of target devices in the future.
Low-cost. The most expensive part of E-Cube is the 𝜇SMU: de-
pending on component availability it costs ≈60€. As such, E-Cube
can be considered a versatile, yet low-cost solution for benchmark-
ing battery-free systems. Depending on the computational power
desired, the other expensive part is a RPI SBC. We decided to use
an older RPI 4B as our hashcash-based benchmark requires nearly
no CPU resources, i.e., almost any RPI can be used as is, or with
minor modifications to the GPIO code. In theory, any other SBC
could be used, as long as it has GPIO pins. In summary, an E-Cube
observer module can be built for ≈200€, including the target node.
Public availability and exposure. Following our experience with
D-Cube, we have opened the preliminary E-Cube testbed to the
community [14]. To date, 17 international teams have obtained
an account and are actively using our benchmarking facility. Our
ultimate goal is to organize a sustainability competition resembling
the format used in the EWSN dependability competition series [6].
We have recently published a call for competitors [10] with the goal
of hosting a contest within the end of the year.
Next steps. While we did verify that the benchmarked results
obtained on the same device are repeatable, we are still in the
process of scaling E-Cube to multiple devices and to evaluate the
impact of different instances of the target HW and 𝜇SMU on the
obtained results.With the recent advances of easy-to-use simulation
tools for battery-free systems [8], E-Cube could further be used to
help deriving and verifying the models for such systems.

6 CONCLUSIONS
In this paper, we have moved our first steps towards the design of
E-Cube, a fully-automated, open, and low-cost benchmarking facil-
ity for battery-free IoT systems. After presenting E-Cube’s design
and architecture, we have showcased a proof-of-concept imple-
mentation of a benchmark. We have also opened our preliminary
implementation of E-Cube to the community, and plan to use it as a
basis to run a sustainability competition quantitatively comparing
the performance of state-of-the-art battery-free solutions.



E-Cube: Towards a First Benchmarking Facility for Battery-Free Systems GoodIT ’24, September 04–06, 2024, Bremen, Germany

REFERENCES
[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A Large Scale Open
Experimental IoT Testbed. In Proc. of the 2ndWorld Forum on the Internet of Things
(WF-IoT). IEEE, 459–464.

[2] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling, Prze-
mysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia, Luca Mottola,
Jacob Sorber, and Josiah Hester. 2024. The Internet of Batteryless Things. Com-
mun. ACM 67, 3 (Feb. 2024), 64–73.

[3] Adam Back. 2002. Hashcash - A Denial of Service Counter-Measure. http:
//www.hashcash.org/papers/hashcash.pdf.

[4] Carlo Alberto Boano. 2021. Enabling Support of Legacy Devices for a more
Sustainable Internet of Things. In Proc. of the 1st International Conference on
Information Technology for Social Good (GoodIT). ACM, 97–102.

[5] Carlo Alberto Boano, Simon Duquennoy, Anna Förster, Omprakash Gnawali,
Romain Jacob, Hyung-Sin Kim, Olaf Landsiedel, RamonaMarfievici, LucaMottola,
Gian Pietro Picco, Xavier Vilajosana, Thomas Watteyne, and Marco Zimmerling.
2018. IoTBench: Towards a Benchmark for Low-power Wireless Networking. In
Proc. of the 1st International Workshop on Benchmarking Cyber-Physical Networks
and Systems (CPSBench). IEEE, 36–41.

[6] Carlo Alberto Boano, Markus Schuß, and Kay Römer. 2017. EWSN Dependability
Competition: Experiences and Lessons Learned. IEEE Internet of Things Newsletter
(March 2017).

[7] Hannah Brunner, Carlo Alberto Boano, and Kay Römer. 2022. Leakage-Aware
Lifetime Estimation of Battery-Free Sensor Nodes powered by Supercapacitors. In
Proc. of the 10th International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems (ENSsys). ACM, 892—-898.

[8] Hannah Brunner, Jasper de Winkel, Carlo Alberto Boano, Przemysław Pawełczak,
and Kay Römer. 2024. Simba: A Unified Framework to Explore and Facilitate the
Design of Battery-Free Systems. In Proc. of the 23rd International Conference on
Information Processing in Sensor Networks (IPSN). ACM.

[9] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Com-
puting. In Proc. of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 53–67.

[10] EWSN 2024 Sustainability Competition. 2024. Call for Competitors. https://iti-
ecube.tugraz.at/wiki/index.php/Call.

[11] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and Rajesh
Gupta. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE Applications. In
Proc. of the 5th Conference on Systems for Built Environments (BuildSys). ACM,
184–185.

[12] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd:
A Portable Testbed for the Batteryless IoT. In Proc. of the 17th International
Conference on Embedded Networked Sensor Systems (SenSys). ACM, 83–95.

[13] Graz University of Technology. 2024. D-Cube: A Low-Power Wireless Network-
ing Benchmark. https://iti.tugraz.at/d-cube.

[14] Graz University of Technology. 2024. E-Cube. https://iti-ecube.tugraz.at.
[15] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeat-

able Experimentation for Tiny Energy-Harvesting Sensors. In Proc. of the 12th
Conference on Embedded Network Sensor Systems (SenSys). ACM, 330–331.

[16] Timofei Istomin, Matteo Trobinger, Amy Lynn Murphy, and Gian Pietro Picco.
2018. Interference-Resilient Ultra-Low Power Aperiodic Data Collection. In Proc.
of the 17th International Conference on Information Processing in Sensor Networks

(IPSN). IEEE, 84–95.
[17] Romain Jacob, Marco Zimmerling, Carlo Alberto Boano, Laurent Vanbever, and

Lothar Thiele. 2021. Designing Replicable Networking ExperimentsWith Triscale.
Journal of Systems Research (JSys) 1, 1 (Nov. 2021).

[18] Dominique Larcher and Jean-Marie Tarascon. 2014. Towards Greener and more
Sustainable Batteries for Electrical Energy Storage. Nature Chemistry 7, 1 (Nov.
2014), 19–29.

[19] Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele. 2017. Competition:
Robust Flooding using Back-to-Back Synchronous Transmissions with Channel-
Hopping. In Proc. of the 14th International Conference on Embedded Wireless
Systems and Networks (EWSN). ACM, 270–271.

[20] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Som-
mer, and Jan Beutel. 2013. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In Proc. of the 12th Inter-
national Conference on Information Processing in Sensor Networks (IPSN). IEEE,
153–166.

[21] Xiaoyuan Ma, Peilin Zhang, Ye Liu, Carlo Alberto Boano, Hyung-Sin Kim, Jian-
ming Wei, and Jun Huang. 2020. Harmony: Saving Concurrent Transmissions
from Harsh RF Interference. In Proc. of the International Conference on Computer
Communications (INFOCOM). IEEE, 1024–1033.

[22] Sayedsepehr Mosavat, Matteo Zella, Marcus Handte, Alexander Julian Golkowski,
and Pedro José Marrón. 2023. Experience: ARISTOTLE: wAke-up ReceIver-based,
STar tOpology baTteryLEss sensor network. In Proc. of the 22nd International
Conference on Information Processing in Sensor Networks (ISPN). ACM, 177–190.

[23] Sayedsepehr Mosavat, Matteo Zella, and Pedro José Marrón. 2021. SOCRAETES:
SOlar Cells Recorded And EmulaTed EaSily. In Proc. of the 18th International Con-
ference on Embedded Wireless Systems and Networks (EWSN). Junction Publishing,
183–184.

[24] Markus Schuß, Carlo Alberto Boano, and Kay Römer. 2018. Moving Beyond Com-
petitions: Extending D-Cube to Seamlessly Benchmark Low-Power Wireless Sys-
tems. In Proc. of the 1st International Workshop on Benchmarking Cyber-Physical
Networks and Systems (CPSBench). IEEE, 30–35.

[25] Markus Schuß, Carlo Alberto Boano, and Kay Römer. 2020. Making D-Cube an
Open Low-Power Wireless Networking Benchmark. In Proc. of the 17th Interna-
tional Conference on Embedded Wireless Systems and Networks (EWSN), poster
session (Lyon, France). Junction Publishing, 164–165.

[26] Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Römer. 2017. A
Competition to Push the Dependability of Low-Power Wireless Protocols to the
Edge. In Proc. of the 14th International Conference on Embedded Wireless Systems
and Networks (EWSN). Junction Publishing, 54–65.

[27] Markus Schuß. 2022. Benchmarking Low-Power Wireless Networking Systems.
Ph. D. Dissertation. Graz University of Technology, Austria.

[28] Sivert T Sliper, Domenico Balsamo, Nikos Nikoleris, William Wang, Alex S
Weddell, and Geoff V Merrett. 2019. Efficient State Retention through Paged
Memory Management for Reactive Transient Computing. In Proc. of the 56th
Design Automation Conference (DAC). IEEE, 1–6.

[29] Statista. 2024. Number of Internet of Things (IoT) Connected Devices Worldwide
from 2019 to 2023, with Forecasts from 2022 to 2030. https://tinyurl.com/
msza2dtr.

[30] Joel Troughton. 2024. 𝜇SMU. https://github.com/joeltroughton/uSMU.
[31] Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan

Beutel, and Lothar Thiele. 2020. FlockLab 2: Multi-Modal Testing and Validation
for Wireless IoT. In Proc. of the 3rd International Workshop on Benchmarking
Cyber-Physical Systems and Internet of Things (CPS-IoTBench). OpenReview.net,
1–7.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://iti-ecube.tugraz.at/wiki/index.php/Call
https://iti-ecube.tugraz.at/wiki/index.php/Call
https://iti.tugraz.at/d-cube
https://iti-ecube.tugraz.at
https://tinyurl.com/msza2dtr
https://tinyurl.com/msza2dtr
https://github.com/joeltroughton/uSMU

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements & Challenges
	4 E-Cube: Design
	4.1 Benchmark Example: Hashcash
	4.2 From D-Cube to E-Cube
	4.3 Architecture

	5 E-Cube: Proof-of-Concept
	6 Conclusions
	References

